北极星

搜索历史清空

  • 水处理
您的位置:环保大气治理除灰除尘技术正文

1000MW机组超低排放改造后粉尘控制策略与探讨

2018-09-10 08:12来源:《黑龙江电力》作者:吴佳洁 李旭等关键词:超低排放改造除尘器粉尘达标排放收藏点赞

投稿

我要投稿

3.2浆液品质对粉尘的影响

该公司5号机组2016年3月15日超低排放改造完成后并网,随着运行时间的推移,在除尘器后粉尘浓度没有变化的情况下,烟囱入口粉尘浓度呈现缓慢上涨的特点,由最初的1.0mg/m3至4.0mg/m3左右。

随着脱硫塔长周期运行,尤其是在全厂废水零排放改造的情况下,脱硫塔接受大量的高含盐废水,使浆液密度与含固量增加,浆液雾滴携包裹粉尘量增多,在除雾器工作效率一定的情况下,粉尘排放量随之上涨。单纯通过加强脱水来降低浆液密度与含盐量的工作压力巨大。因此,在脱硫塔运行一段时间后,有必要制定计划将脱硫塔浆液置换成新鲜浆液。现阶段发电机组利用小时数下降,电厂长期有机组停备,也为脱硫塔浆液置换提供了操作空间。

3.3预洗涤系统对粉尘的影响

该公司百万机组脱硫入口烟道设计有预洗涤系统,主要作用是:

a.在锅炉启动阶段,预洗涤原烟气中的烟尘与油污;

b.事故情况下,降低吸收塔入口烟气温度、粉尘浓度与油污;

c.电除尘故障情况下,预洗涤烟气中的粉尘,以防止过量烟尘进入吸收塔。

但由于该系统长期未投入使用,将其改造成其他用途。建议恢复该系统,使该系统可以正常投入使用。正在改造或计划改造的企业可以在脱硫入口烟道增设预洗涤系统,可以有效降低粉尘排放,尤其是在电除尘整流变部分故障的情况下,可以避免粉尘超标排放,保护企业环保形象。

3.4脱硫吸收塔浆液循环泵运行方式对粉尘的影响

2016年4月28日,5号机组负荷850MW,5A/5B/5C/5D/5E浆液循环泵运行,原烟气折算后SO2质量浓度为2000mg/m3,净烟气折算后SO2质量浓度为25mg/m3,并稳定不变,烟囱入口粉尘持续处在超标边缘。判断是由于分析仪装置死机造成,在重启装置后,净烟气折算后SO2质量浓度从25mg/m3降至8mg/m3,具备停运1台或2台浆液循环泵条件。在停运5B、5E吸收塔循环泵后,烟囱入口粉尘质量浓度由4.8mg/m3降至3.6mg/m3,并且稳定。之后,进行了如下试验:

试验条件:机组低负荷运行,保证烟囱入口SO2质量浓度不超标。

工况如下:

1)B、C、D———3台浆液循环泵运行;

2)B、C、D、A———4台浆液循环泵运行;

3)B、C、D、A、E———5台浆液循环泵运行;

试验结果表明,在相同工况下,5台浆液循环泵运行时烟囱入口粉尘瞬时值﹥4台浆液循泵运行时烟囱入口粉尘瞬时值﹥3台浆液循泵运行时烟囱入口粉尘瞬时值。停运5E浆液循环泵后,烟囱入口粉尘质量浓度降低了0.5mg/m3;停运5A浆液循环泵后,烟囱入口粉尘质量浓度降低了0.3mg/m3。

根据华能国际有限公司超净排放协同治理的思路,脱硫系统既脱除硫氧化合物也有协同脱除粉尘的功能。脱硫系统脱除粉尘主要依靠浆液雾滴包裹粉尘,然后通过除雾器收集。只要控制除雾器出口雾滴携带量,就能控制粉尘排放。浆液循环泵运行台数越多,形成的雾滴就越多,而除雾器除雾效率是在一定范围内的,除雾器出口雾滴携带量增加了,粉尘排放浓度也就高了。故在二氧化硫排放合格的情况下,减少浆液循环泵的运行台数,尤其是上层浆液循环泵,可以有效降低粉尘排放值,同时也可以大幅降低脱硫电耗。

3.5低低温省煤器运行方式对粉尘的影响分析

在配合西安热工院进行5号机组性能试验时,多次进行低低温省煤器(又称烟冷器)投退,发现低低温省煤器退出后,粉尘会出现不同程度的上涨。低低温省煤器退出后,电除尘入口烟气温度上涨,烟气体积流量增加,粉尘比电阻升高,烟气粘滞性变大,粉尘颗粒在烟气中驱进速度降低,会降低电除尘器的工作效率,所以有必要进行低低温省煤器退出对粉尘影响的定性分析。近期几次低低温省煤器退出后对粉尘的影响结果见表1。

表1不同负荷下,低温省煤器退出后对粉尘的影响数据表

从表1可以看出:

1)低低温省煤器退出,烟囱入口粉尘会上涨;

2)高负荷时,低低温省煤器退出对粉尘影响要大于低负荷;

3)750MW及以下负荷,低低温省煤器退出,可以控制粉尘不超标。

因此,制定了以下措施以应对低低温省煤器退出:

1)低低温省煤器退出前,将电除尘整流变二次电流提高至出力允许值;

2)停运三、四电场振打装置;

3)降低机组氧量,900MW以上将氧量降低至2.0%,750~900MW将氧量降低至2.5%~3.0%,750~500MW将氧量降至3.0%~4.0%。

4)低低温省煤器退出前及期间,联系脱硫专业加强除雾器冲洗(提前联系脱硫将吸收塔液位控制低点);

5)如果低低温省煤器计划性提出,调整配煤,上高热值、低灰分的配煤;

6)如果低低温省煤器短时退出,尽量控制低低温省煤器退出时间横跨两小时,使低低温省煤器退出对粉尘造成的影响均摊在两个时段,通过降低低低温省煤器在运时粉尘值,可以避免小时均值超标。

现阶段该公司通过在除尘器前加装低低温省煤器,将除尘器入口烟气温度由140℃降低至90℃,通过降低粉尘比电阻,提高了电除尘效率;同时由于烟气温度降至硫酸露点温度以下,还减少SO3的排放。可以尝试烟气深度余热利用,进一步将烟气温度由现阶段的90℃降低至50~60℃,不仅可以进一步提高除尘效率,还可以提高经济效益与脱硝投入率;但也面临着一大问题,即低温腐蚀,理论上烟气中碱性成分粉尘可以有效中和烟温降低后冷凝的硫酸雾汽,大幅减弱低温腐蚀。

4煤质对粉尘的影响分析

煤质对粉尘的影响因素主要有热值、硫分、灰分等,燃煤机组排放的粉尘来源于原煤燃烧后产生的烟气携带,原煤中灰分越大,烟气中粉尘浓度越高。5号机组在超低排放环保验收过程中,掺烧了不同加权硫分的燃煤。经过对比不同加权硫分配煤下粉尘的浓度情况,发现配煤加权硫分对粉尘的排放影响明显,如图2所示。

通过图2可以看出原煤中硫分高低对粉尘影响明显,硫分越高,粉尘越高;硫分越低,粉尘越低。控制入炉煤的硫分可以有效控制粉尘的排放浓度。

因该公司来煤结构情况,5号/6号机组5/6D煤仓配煤为济源煤业矿,该煤热值低(该煤低位发热量为14653.8~20096.64kJ)、灰分高(27%~45%),掺烧该煤种后,每次启动5D磨煤机后,除尘器出口及烟囱入口粉尘浓度都有一定幅度上涨,在高负荷时,甚至出现粉尘超标不可控的情况。多次采取快速降低5D磨煤机出力甚至停运的方法,降低粉尘效果明显。入炉煤热值越低,带同样电负荷就需要更大的煤量;入炉煤灰分越高,单位烟气中粉尘含量就越高,电除尘器负担就越重。因此,原煤的热值与灰分对粉尘排放影响明显。

图2配煤加权硫份对粉尘的排放影响

去年6月份以来,动力煤价格进入了上涨的快车道。为了降低运营成本,各燃煤电厂来煤品质逐步变差,硫分上涨,热值下降,因此,必须要严把入厂煤质,同时做好配煤掺烧工作。

故提出如下建议:

1)在低负荷时,锅炉氧量高,折算后粉尘浓度也高,尽量增加低热值、高灰分煤仓的出力,降低硫分较高煤仓的出力,保持较少的浆液循环泵运行,保证SO2达标排放,同时也能保证粉尘达标排放,且可以降低脱硫电耗,增加低热值煤入炉后,入炉总煤量上涨,有利于维持再热汽温;

2)在高负荷时,运行浆液循环泵台数较多,可以增加高硫分煤仓的出力,降低低热值、高灰分煤仓的出力,这样既可以平衡低负荷期间少入炉的高硫原煤与多入炉的低热值、高灰分原煤,使煤场库存结构稳定,还可以保证SO2、粉尘达标排放。

5结束语

1000MW机组超低排放改造后,对影响粉尘达标排放的问题进行分析,采取优化电除尘电场振打运行方式,结合季节特点制定定期清理高频电源通风滤网等措施,解决了制约粉尘达标的问题;同时,通过降低整流变二次电流运行,将电除尘电耗由0.21%降至0.15%,节能减排效果显著。从脱硫系统、低低温省煤器投退、煤质等因素,对粉尘的影响进行了分析,通过改善除雾器清洁度、投入预洗涤系统、优化浆液循环泵运行方式。试验分析低低温省煤器投退、原煤硫分、灰分及热值与粉尘排放的关联性,制定具体的粉尘控制策略,提出具有较强操作性的改进建议。但是,烟气流场分布不均匀对粉尘的影响,及深度降低烟气温度的可行性等问题没有解决,尚需进一步探讨。

原标题:1000MW机组超低排放改造后粉尘控制策略与探讨
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超低排放改造查看更多>除尘器查看更多>粉尘达标排放查看更多>