新闻
  • 新闻
  • 产品
  • 企业
您当前的位置:环保 > 固废网 > 危险废物 > 正文

热等离子体处理危险废物技术原理及应用进展

北极星固废网  来源:危废前沿  作者:西安航天源动力  2020/3/20 10:05:39  我要投稿  

北极星固废网讯:摘要:介绍了等离子体的相关概念及用于固体废物处理的等离子体发生装类别,阐述了热等离子体技术处理危险废物的机理过程,并分析了热等离子体用于危险废物的处理的优点及适用性,介绍了该技术在国内外实际工程应用中的案例。最后指出由于满足不断严苛的环保要求和符合可持续发展,热等离子体技术在危废市场的发展前景广阔,但推动热等离子体技术国内市场化需要进一步提高效率并降低成本。

关键词:热等离子体;危险废物;无害化处置;工程应用

前言

环境问题是当今世界共同面临的重大课题之一。危险废物,由于具有腐蚀性、毒性、易燃性、反应性或感染性等一种或几种危险特性,环境危害特别严重。对于危废处置,主要为焚烧法、填埋法、物化法等处理处置技术。但由于缺乏行之有效的处置技术,导致我国危废处置能力长期严重不足。随着市场规模提升,监管力度加强,将会有越来越多的增量危废进入市场。对于特种危废采用专用物化法、专用回收法处置以外,大部分危废采用填埋法、焚烧法处置。然而,填埋法并不能解决危废的本质问题,且随着土地资源的紧张,填埋法将逐渐弃用;焚烧法减容、减量效果较好,但带来二噁英、飞灰、炉渣等次生危废问题。热等离子体技术由于“高温、还原性气氛”的技术特点,可实现“有机气化”与“无机熔融”的完美结合,是国际公认的最先进危废处理技术,被冠以“危废终结者”的美誉。

1 等离子体

1.1 等离子体的定义及分类

等离子体(plasma)又叫做电浆,它通过给气体施加足够的能量(通常为气体放电)而电离形成,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,广泛存在于宇宙中,常被视为是物质的第四态。虽然等离子体作为高度电离的气体由大量的正负带电离子和中性粒子组成,但等离子体整体表现为电中性。等离子体根据粒子温度和整体能量状态可分为高温等离子体和低温等离子体,其中低温等离子体又能细分为冷等离子体和热等离子体。详见表1.1。主要应用于固废和危废处理的是热等离子体。

表1.1 等离子体的分类

139.png

1.2 热等离子体发生装置

热等离子体处于局域热力学平衡(LTE),其中的电子、离子和其他中性粒子具有接近的温度,空气和空气中的水在等离子体炬内形成等离子体。O2、H2O在高温电弧中被电离,生成O3+、OH等活性基团。用于产生热等离子体的高温一般由电能驱动的电弧炬提供。根据电弧炬放电方式的不同,可以将等离子体反应器分为射频等离子体炬、微波等离子体炬、直流/交流等离子体炬等。目前在研究或者已经商业化应用的设备多为直流电弧等离子体发生器,根据阴阳极的分布规律分为两种结构,即转移式和非转移式。非转移式阴阳极都在发生器内部,而转移式通常将工件作为其中一个电极,所以转移式的电极寿命比非转移式更长。美国、俄罗斯、日本、韩国等国家的研究和具体应用表明,等离子体高温焚烧熔融处理技术因其设备体积小、处理速度快、能够处理各种各样的废物、减容比高且熔融产物稳定、投资费用相对较低等优势,成为低放废物处理领域最有发展前途的技术之一。表1.2为不同的等离子体处理固体废弃物的主要特征对比。表1.2 用于固体废物处理过程中不同类型的热等离子体的对比

140.png

2 热等离子体用于处理危险废物的反应机理

由于危险废物等离子体热处理过程极其复杂,因此各种成分的分解与熔融程度未必就能一步到位。但为了很好地认危险废物直接气化熔融焚烧过程,一般将整个气化熔融焚烧过程分为干燥、热分解气化、燃烧、熔融四大过程。通过等离子体热解和等离子体气化或等离子体气化和等离子体熔融组合形成等离子体热解气化、等离子体热解熔融或等离子体气化熔融,特别适用于混合类型的废弃物(既含有有机成分,又含有无机成分)。通过以上反应过程,固体废弃物大部分有机质变为气体物质,不能气化和裂解的物质熔融为高密度的玻璃化物质,从而达到消除固体废弃物的目的。

2.1 热等离子体直接气化熔融处理危险废物过程

热等离子体直接气化熔融处理危险废物包括以下过程:(1)干燥过程 危险废物的干燥过程是利用热能使水分气化,并排出生成的水蒸汽的过程。干燥过程中需要吸收很多的热能,危险废物的含水量越大,干燥过程所需的热能就越多,所花的时间也越长,导致焚烧炉内的温度下降也就越快,对危废等离子体气化熔融燃烧效率的影响也就越大。危险废物由给料器送入等离子体直接气化熔融焚烧炉炉膛后,在炉内高温热气流的强传热作用下,危险废物被对流和辐射加热到500℃℃,首先被加热析出附着在危险废物表面的水分,水分的快速挥发完成危险废物的干燥过程。该干燥过程因需要供给大量的热,在炉膛内形成干燥区域的低温带。(2)等离子体热解(plasma pyrolysis) 危险废物的热分解气化过程是危废中多种有机可燃物利用等离子体炬的热能在无氧或缺氧条件下打断废物中有机物的化学键,使其成为小分子。反应的产物包括各种烃类、固定碳和不完全燃烧物等。危废中的可燃固体物一般由C、H、O、N、S、Cl等元素组成。危废挥发分在相当程度上决定气体的质量和气化产物的分布,其结果又直接受温度与加热速率的影响。

141.png

每一种有机物都可以热分解,并且大多数热分解反应的速率随着温度的增加而增加。对于有机物的分解取决于反应温度、在此温度下的停留时间和该物质的固有属性。有机物分解的分解速率公式如下:

142.png

式中,c——时间t(s)时的浓度; k——速率常数(与频率因子V、活化能E、气体常数R有关) 频率因子V、活化能E都与反应的能量有关。频率因子标示分子之间碰撞的的概率。当温度上升时,分子的碰撞次数也会上升。频率因子和活化能对于特定的化合物来说都是确定的。 有机物在高温条件下的分解曲线如下图2.1所示,从图中可以明显看出,在1atm、1300℃以上的炉况条件下,任何C-H-O体系的有机物已全部裂解为CO、H2合成燃气。

143.png

(3)燃烧危废在等离子体炉的燃烧过程是在氧气存在的条件下有机物质和碳的剧烈氧化放热过程。危险废物的实际燃烧过程十分复杂,经干燥和热分解后,产生许多不同种类的气、固态可燃物,这些可燃物在与氧混合并达到一定着火条件后就会形成火焰而燃烧。因此危险废物的焚烧实际上是一个既有固相燃烧又有气相燃烧的非均相燃烧的混合过程,它比纯固态燃烧或纯气态燃烧均要复杂的多。燃烧过程为干燥、热分解气化与熔融过程提供必要的热量。

144.png

危废完成热分解气化后,因供给的氧气量不足,还剩有未燃烧的残碳,继续升温加热,供入空气使得在高温熔融区域气化后的可燃气体和残碳继续燃烧,该燃烧区域的温度稳定保持在1300℃,该区域为危废气化与热解提供大量的热量。燃烧后的无机不燃物降落到高温燃烧熔融区域,危废中的挥发分气化挥发,随烟气流动干燥湿垃圾。

(4)等离子体熔融玻璃化(plasma vitrification)熔融玻璃化是指在热等离子体的高温作用下,废物与加入的适当添加剂等物质混合熔融形成的一种稳定的玻璃态物质。原废物中的有害金属被包封在固体中,并阻止其迁移到水和大气中,可达到稳定化、减量化及资源化的目的。一般其反应机制是利用SiO2网络结构形成难溶物质,具体见图2.3。

145.png

危废的熔融过程主要考虑灰渣的熔融点温度,而灰渣的成份则是制约灰渣熔融温度高低的关键因素。由于危废成份复杂、波动性大,故灰渣的成份要比有色工业和钢铁工业中各种炉渣的成份要复杂得多,且危废灰渣的酸碱性取决于灰渣中各主要成份的比例。危废热解气化后的灰渣的成份主要CaO、SiO2、Al2O3和Fe2O3为主,也包括以微量存在的钠盐和钾盐等其它成份。在危废圾熔融过程中,由于部分未完全燃烧的C与Fe2O3发生还原反应,生成金属铁和磁铁。而灰渣中的CaO~SiO2~Al2O3三元系熔融玻璃陶瓷化成各种稳定化合物,降低危废灰渣的熔融点温度,且形成的SiO2网络结构可以固化和包裹重金属,实现危废的彻底无害化。

分享到:
投稿联系:马女士  0335-3030550  13613388823  新闻投稿咨询QQ: 2731581970
邮箱:maxuejing#bjxmail.com(请将#换成@)
北极星环保网声明:此资讯系转载自北极星环保网合作媒体或互联网其它网站,北极星环保网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考。
环保二维码
微信号:bjx-gufei

北极星固废网订阅号
每日精选固废最新资讯,及时掌握行业动态。
固废领域,我们很用心!

新闻排行榜

今日

本周

本月

关闭

重播

关闭

重播

热词检索:ABCDEFGHIJKLMNOPQRSTUVWXYZ