环保行业垂直门户网站

新闻
  • 新闻
  • 产品
  • 企业
当前位置:环保 > 技术 > 正文

未来污水处理工艺发展的若干方向

北极星环保网来源:给水排水 陈珺2018/2/13 9:39:53我要投稿

2.2碳转向

在传统污水处理工艺中,COD的主要流向是被好氧分解,除此之外还用于脱氮除磷、厌氧消化及污泥处置。目前,污水中的碳已被广泛认为是可贵的资源,可以被用于产生能量(厌氧消化)、开发出以碳为基础的商品。因此,污水中的可生物降解有机物从二级处理转向能量回收的这一转变被称之为碳转向,碳转向是污水处理实现能量自给的必由之路,已经成为当前及今后一段时间内污水处理技术发展的一个重要方向。图4反映的是COD在新旧理念下的流向。

污水处理技术

目前,碳转向的技术主要有化学强化一级处理(CEPT)、高负荷活性污泥工艺、厌氧处理等。CEPT对颗粒性及胶体性COD可获得40%~80%的去除率,但对溶解性COD无法去除。虽然污水的厌氧处理在热带地区有所应用,但在温带地区的主流工艺中由于其速率较低,同时产生的甲烷会有相当一部分溶解在出水中,因此尚难以得到广泛的应用。

2.2.1高负荷活性污泥工艺

高负荷活性污泥工艺(HRAS)最早由Buswell和Long在1923年开创。HRAS可以设计成满足二级处理(BOD5<30mg/L、SS<30mg/L)的目的,也可以设计AB工艺的A段用于碳吸附的目的。当用于二级处理时,HRAS的SRT一般1~4d(与温度有关),HRT一般2~4h;当用于碳吸附时工艺参数有显著的不同,通常SRT<1d、HRT<30min。HRAS工艺能够用较低的能耗和占地面积将进水中的颗粒性、胶体性、溶解性物质富集浓缩于剩余污泥中,通过厌氧消化或焚烧由此实现污水处理的碳转向。

HRAS工艺实现碳转向的关键所在是颗粒性COD与胶体性COD的最大化去除,同时又要最低程度的矿化和慢速可生物降解COD(sCOD)的水解。在HRAS工艺中,颗粒性COD与胶体性COD是通过生物絮凝吸附于絮体之上并通过后续的固液分离得到去除,颗粒性COD与胶体性COD的吸附与胞外聚合物(EPS)的产生有密切关系,而溶解性COD的去除是胞内物质贮存的结果。

虽然ASM模型的历史已有30年之久,但主要是用于SRT>3d的活性污泥工艺,对于HRAS工艺ASM模型难以得到理想的结果。由此,近年来有关HRAS工艺的模型得到了发展,其中之一便是双基质模型用于解释HRAS工艺的特性,双基质模型的核心之处是将溶解性可生物降解有机物(SB)进一步分为快速溶解性可生物降解有机物(SBf)和慢速溶解性可生物降解有机物(SBS),双基质模型认为SBf与SBS同时被生物降解,微生物利用SBf的最大比生长速率较SBS的要高,进一步的试验也验证双基质模型较双阶段模型更为准确,双阶段模型认为微生物首先利用SBf,之后再利用SBS。

2.2.2HiCS工艺

在对HRAS工艺机理认识不断深入的同时,一些衍生工艺也得到了发展,并展现出更好的发展势头,其中之一便是高负荷接触稳定工艺(见图5)。传统接触稳定工艺是1922年Coombs在英国开创,一般SRT>3d,通常目的是为了减少反应池的池容。HiCS工艺的SRT一般为0.2~3d,是HRAS和接触稳定工艺的相互结合,生物吸附能力更强,所需的池容更小,污水的碳转向效率更高。

污水处理技术

HiCS工艺包括稳定池和接触池,进水直接进入接触池,保持在厌氧或较低的DO环境,回流污泥进入稳定池进行曝气。接触池去除进水有机物的主要机理是微生物在饱食状态下的吸附与胞内贮存,而在稳定池中微生物处于饥饿阶段,大量吸附回流污泥中的颗粒态、胶体态物质。在HiCS工艺中,接触池与稳定池之间会形成一定的基质梯度,迫使微生物经历“饱食-饥饿”的环境,产生一种令微生物倾向于吸附与贮存基质的选择压,起到类似活性污泥工艺中选择器的作用。

在HiCS工艺中,当接触池的泥龄为0.3d,好氧的条件下会产生较为明显的EPS,EPS的产生会提高生物絮凝性能,这对于实现能量的最大化回收以及保持良好的污泥沉降性能非常关键。在某种程度上这与好氧颗粒污泥形成的条件之一“饱食-饥饿”有着类似之处。

HiCS工艺的发展为实现污水处理的能量自给开辟了一条值得借鉴的方法,污水中蕴含着客观的能量,有的研究结果显示污水中所蕴含的化学能是处理所需能耗的1.2~6倍,但目前绝大多数处理工艺是分解COD,而非回收COD。研究结果显示,HiCS工艺较传统活性污泥工艺能量回收高1倍。

通常,传统活性污泥工艺的能耗是27kWh-PE(PE为人口当量),HiCS的能量回收可以达到28kWh-PE,非常有利于实现污水处理的能源自给。HiCS工艺在未来进一步发展的方向仍然是需要更深入了解吸附、贮存、生长及氧化的机理,并在工程尺度的规模上优化设计与运行。

2.3主流短程脱氮技术

主流短程脱氮技术包括短程硝化反硝化、厌氧氨氧化、厌氧甲烷氧化。目前,厌氧甲烷氧化仍处于基础研究阶段,可能在未来相当长一段时间还难以走向实际工程应用,短程反硝化和厌氧氨氧化的蓬勃的发展势头令人关注。

2.3.1现状

从工程角度而言,推动短程硝化反硝化及主流厌氧氨氧化发展的动力主要来自于减少或摒弃外加碳源的需求、降低曝气能耗以及追求更小的反应池容。

不同的水质特征会影响到主流短程脱氮技术的选择,如果进水碳氮比较高(C/N=6~10)时适合传统硝化反硝化,当碳氮比处于中等水平(C/N=3)适宜短程硝化反硝化,当碳氮比较低时(C/N<1)时适合主流厌氧氨氧化。由于主流厌氧氨氧化的前景巨大,同时短程硝化是厌氧氨氧化的一个必要前提,因此主流厌氧氨氧化成为脱氮技术发展的焦点。

目前,国际上主流厌氧氨氧化的技术发展路线大致有四类:颗粒污泥、絮体+颗粒污泥、生物膜/IFAS以及悬浮+生物膜的形式形式

延伸阅读:

22个农村污水处理技术大全

污水处理技术之6种最常用的MBR组合工艺

污水处理技术之城市污水厌氧氨氧化脱氮研究

污水处理技术之生物脱氮除磷工艺的新旧演变

环保技术人员学习成长交流群
志同道合的小伙伴全在这里

投稿联系:0335-3030550  
邮箱:huanbaowang#bjxmail.com(请将#换成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

推荐阅读

MBBR工艺工作原理及应用特点
本文主要介绍了移动床生物膜工艺的的工作原理,探
火电厂脱硫废水零排放技术分析
国务院发布“水十条”以来,国家将强化对各类水污
几种垃圾焚烧炉排的介绍
众所周知,炉排系统是炉排式垃圾焚烧炉中最核心的
软化树脂知识点详细讲解
水处理树脂分为阳离子树脂和阴离子树脂,阳离子树
烟道设计培训资料
火力发电厂,烟道设计培训,从七个方面介绍了烟气
热词检索:ABCDEFGHIJKLMNOPQRSTUVWXYZ

关闭