环保行业垂直门户网站

新闻
  • 新闻
  • 产品
  • 企业
当前位置:环保 > 技术 > 正文

关于低负荷导致A2O除磷效率下降原因的探讨!

北极星环保网来源:环保工程师2019/9/3 9:03:23我要投稿
所属行业: 水处理  关键词:生物除磷 污水处理厂 反硝化菌

以同期进行的小试为平行对比,其生化反应的理论水力停留时间为18h,实际水力停留时间为5.25h,非曝气容积比为0.5,缺氧区占非曝气容积的2/3,其他参数与生产工艺完全相同,NH3-N、NO3-N、PO43--P含量的变化过程见图3。

微信图片_20190903085906.jpg

由图2可知,该污水处理厂生产系统处于低负荷运行状态,其污泥有机负荷为0.106kgCOD/(kgMLSS·d)。在厌氧区由缺氧混合液回流所携带的NO3-N利用进水中的易降解有机物进行反硝化,同时聚磷菌利用易降解有机物进行厌氧释磷(在厌氧反应结束时释磷量仅为3mg/L)。由厌氧区转入缺氧区后由于回流污泥及好氧混合液回流的稀释作用使PO43--P下降到6.4mg/L,而由回流污泥及好氧混合液回流所携带的NO3-N在此进行反硝化反应,至缺氧结束时反硝化反应尚未进行彻底(剩余NO3-N为1.4mg/L),在此阶段PO43--P略有下降。

由缺氧区进入好氧区后在有机物氧化的同时进行硝化反应使NH3-N浓度迅速下降,但随着反应的进行硝化速率降低,NO3-N浓度伴随硝化反应的进行而不断上升,NO3-N的增加量与NH3-N的减少量基本呈对应关系,而PO43--P并未出现明显的下降,也就是说聚磷菌在好氧条件下并未进行大量的吸磷反应,这与厌氧条件下释磷量较少有关。

由图3可知,小试系统污泥有机负荷为0.222kgCOD/(kgMLSS·d),此时在厌氧区聚磷菌利用进水中的易降解有机物进行厌氧释磷(释磷量达13mg/L)。由厌氧区转入缺氧区后同样由于回流污泥及好氧混合液回流的稀释作用使PO43--P下降到11.5mg/L,随后聚磷菌利用由回流污泥及好氧混合液回流所携带的NO3-N进行吸磷,同时进行反硝化反应。由缺氧区进入好氧区后聚磷菌继续进行吸磷反应直至反应结束(PO43--P接近于零),在此阶段有机物氧化与硝化反应进行得也较彻底。

对比图2、3可知,相同工艺的两个反应系统在不同负荷条件下除磷能力迥异,其主要是低负荷运行导致的好氧延时曝气使细胞内的储存物质(特别是PHB)发生变化,而使PHB被部分或全部消耗掉的原故,而细胞内的糖原(Glycogen)在好氧条件下的转化因受PHB数量减少的影响而降低,由于糖原的减少进而影响到厌氧条件下磷的释放及对挥发性脂肪酸的吸收,PHB的合成亦进一步减少,总之由于生物除磷在好氧条件下的吸磷速率和吸磷量受细胞内PHB含量的影响,PHB的减少导致磷吸收速率和吸磷量的下降,使聚磷菌无法有效地吸收细胞外的磷酸盐合成聚磷,周而复始导致生物除磷能力丧失。

3、结论与建议

现场生产性试验与小试对比结果表明,长期低负荷运行是导致生物除磷效率下降的主要原因。在低负荷运行条件下的好氧延时曝气使聚磷菌细胞内的PHB含量下降,导致磷吸收速率和吸磷量的下降,从而使聚磷菌无法有效地吸收细胞外的磷酸盐合成聚磷,最终导致生物除磷能力丧失。

由于延时曝气对生物除磷会产生不利影响,所以在城市污水处理厂应适当控制曝气量、有效地调节曝气系统,这样不仅可以节省能量、降低运行费用,而且进一步保证了生物处理系统运行的稳定性,同时可为好氧同步反硝化创造良好的环境条件,降低回流系统携带的NOx-N(硝态氮)量,减少前置反硝化的碳源消耗,降低聚磷菌与反硝化菌对碳源的竞争,为聚磷菌提供充足的碳源以保证生物除磷对碳源的需求,最终提高了生物除磷的效率。

延伸阅读:

污水处理技术之AAO脱氮除磷工艺计算书

污水处理技术之AAO工艺的五个现场实例探讨

环保技术人员学习成长交流群
志同道合的小伙伴全在这里

投稿联系:0335-3030550  
邮箱:huanbaowang#bjxmail.com(请将#换成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

推荐阅读

MBBR工艺工作原理及应用特点
本文主要介绍了移动床生物膜工艺的的工作原理,探
火电厂脱硫废水零排放技术分析
国务院发布“水十条”以来,国家将强化对各类水污
几种垃圾焚烧炉排的介绍
众所周知,炉排系统是炉排式垃圾焚烧炉中最核心的
软化树脂知识点详细讲解
水处理树脂分为阳离子树脂和阴离子树脂,阳离子树
烟道设计培训资料
火力发电厂,烟道设计培训,从七个方面介绍了烟气
热词检索:ABCDEFGHIJKLMNOPQRSTUVWXYZ

关闭