登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
本文论述钢铁工艺中减排CO₂的本质性问题以及未来的技术前景。另外,减排CO₂关乎海内外发展动向,是全球钢铁行业共同面对的问题。基于未来的措施,从新角度开展的技术开发已经开始,如利用CO₂的CCU技术(CO₂捕获与利用)、与可再生能源关联的脱碳氢炼铁等,本文就其开发动向进行论述。
1前言
长久以来,全球气候变暖已成为人们日益关注的问题。自1997年《京都议定书》通过以来,减少温室效应气体排放的重要性已达成共识。2016年11月《巴黎协定》生效,一致通过并确定了至2050年的长期目标以及期间依据NDC(国家自主贡献) 减少温室效应气体排放的具体程序、推进方法等。长期目标即至2050年把全球平均气温升幅控制在工业化前水平以上、低于2℃之内,并努力将气温升幅限制在工业化前水平以上、1.5℃之内。为了提高其公平性和有效性,制定出从2020年开始每五年将强制执行各个国家设定的目标。各国公布过渡性减排目标,根据“框架与审视”原则,对进度进行相互审查、监督。日本遵循《巴黎协定》,制定了长期目标,即应对全球气候变暖措施和经济增长并重,至2050年将温室效应气体排放量减少80%。虽然其他国家的目标与此相近,但欧洲也出现了2050年实现零排放的国家。尽管美国宣布退出,但《巴黎协定》已经设定了具体的数字化目标,通过所有国家的参与,正在进入实现大幅度低碳化的实施阶段。
在日本,2017财年CO₂排放量为11.9亿吨,占整个温室效应气体的大部分。其中钢铁业约占15%。钢铁业是材料产业的代表,使用碳作为主要的还原剂,由此不可避免地会产生CO₂,与能源产业等其他行业产生因素有本质上不同,影响巨大。因此,作为材料产业,创建一个既要实现长期目标,又要保持健康活力并履行稳定供应责任的方案,实属不易。
2钢铁工艺与CO₂的产生
为了解未来减排CO₂的发展方向与存在的问题,首先要了解当前的生产动向和钢铁工艺。尽管据说钢铁生产设施过剩,但东亚正在陆续建造新钢铁厂,粗钢产量逐年增加,以满足近年来尤其是亚洲对钢铁的旺盛需求。2018年世界粗钢产量达到18.08亿吨。2018年高炉-转炉法生产的粗钢产量占粗钢总产量的71%。在日本,粗钢的75%采用高炉-转炉法生产。电炉法由基于天然气直接还原工艺的电炉或者是将废钢作为铁源的电炉组合工艺构成。比较了各工艺生产粗钢的CO₂排放量:采用高炉-转炉法,每吨粗钢产生的CO₂排放量约为1.8-2.0t;直接还原法由于使用通过重整天然气获得的还原气体,因此,CO₂排放量是使用煤炭的高炉-转炉法的约70%;废钢-电炉法由于无需还原,所以是高炉-转炉法的约30%。两者都是取决于电力的CO₂排放因素,低于高炉-转炉法。另一方面,高炉-转炉法能够生产包括高等级钢在内的所有钢铁产品,并且适合于批量生产。最近,亚洲地区新建钢铁厂采用的是高炉-转炉法,从应对力强的制造技术角度来看,今后仍将继续定位为主流工艺。直接还原工艺最大规模约为200万吨/年,工厂位置仅限于天然气开采区,以前一直是小型工厂。但最近选址条件正在扩大,美国正在建设利用页岩气的200-250万吨/年的大型直接还原工艺设施,天然气价格也在变化,这种用法需引起关注。从抑制CO₂排放量的角度来看,优选使用废钢。但是,将城市废钢和内部产生的废钢用作铁源,前者作为已经成分调整的铁源,由于存在元素流失的问题,只限于制造普通钢。另外,废钢本身数量受到钢材积累量的限制,稳定性难以确保,因此不能成为主要铁源。
为了应对未来钢铁需求的增长并稳定地大量供应优质钢铁产品,针对目前推进的减排CO₂的要求,首先需要考虑如何改进高炉-转炉法,或者灵活应用其他方法的特征,探索复合生产结构的最佳形态,作为候选方法。关注直接还原法,不仅考虑天然气,还需扩展思路,灵活地将炼铁厂产生的焦炉煤气(COG)用作还原气体的工艺,与高炉-转炉法相结合形成复合工艺等。
3低碳和脱碳的方法与技术课题
图1所示为由高炉-转炉法构成的综合钢铁厂中碳、能源的宏观流程以及低碳和脱碳的基本措施。综合钢铁厂主要由炼铁工序和下游工序构成,需要将由煤炭等组成的22-24GJ/t的能源投入到炼铁工序中。炼铁过程中,除生产铁水之外,还通过将高炉、焦炉等产生的相当于4-5GJ/t的煤气供给下游工序,来实现综合钢铁厂的能源自给。图1中同时示出减排CO₂的界线。钢铁业是能源消耗大户,考虑到能源自给,需要将CO₂减排控制在图1所示界线内。措施包括减少高炉对碳的需求量和脱碳、在出口侧分离、运输和存储CO₂的CCS(CO₂捕获与封存),以及再利用CO₂的CCU(CO₂捕获与利用)。但是,包括运输和存储在内的CCS很大程度上取决于周围的地理条件,其适用性难以预测。因此,入口侧的低碳、脱碳技术以及CO₂再利用技术CCU将成为钢铁领域的主要开发目标。
图2所示为以高炉为中心减排CO₂工艺的整体。图中左侧所示为从原料侧开始的基于当前高炉减少输入碳的方法。列举了通过提高高炉中碳利用率、降低炉温、控制还原平衡或投入金属铁降低还原负荷等方法。金属铁是由天然气或COG还原生产。作为还原平衡控制的手段,高反应性焦炭是一种具体的形态。在日本,NEDO支持的铁焦项目正在开发中,通过30t/d中试工厂,JFE福山正在建设300t/d中间工厂。将金属铁输入高炉与直接还原过程有关。虽然两者都需要额外的设备,但是现有高炉可以直接使用。图4右侧示出了还原煤气流的再构成以及使用吹入氢还原材的方法。具体讲,就是对从高炉排出的炉顶煤气实施CO₂分离,分离后的气体作为还原气体再生利用,循环到高炉中使用,以减少输入碳量的方法。或者通过COG、天然气重整,转换为还原气体,循环到高炉中使用的方法。两种都是通过增强高炉内的煤气还原功能,抑制消耗焦炭的高炉内的直接还原反应,能够降低作为输入碳的焦比。煤气重整可以是通过炉顶煤气中CO₂的干重整,也可以是蒸汽重整,前者也是碳循环。另外,列举了使用从风口喷吹天然气等氢系还原剂或生物质的方法。作为基础技术,有一种全氧高炉工艺,该工艺可以通过从送风中去除还原不需要的氮来提高还原效率,并通过吹入大量的氢系还原剂来提高低碳化的自由度。1970年初期,日本开发了向高炉底部喷吹还原气体的技术,在当时的新日铁广畑进行了部分商业炉试验。COG干重整法由NKK(现为JFE 钢铁)作为NKG工艺在试验高炉中完成了效果验证。低碳高炉的基础——无氮全氧高炉于1980年在试验高炉中进行了测试等。目前,日本正在实施国家项目COURSE50。COURSE50中的50指的是目标年2050年。目标是通过向COG中喷吹经过蒸汽重整后的还原气体,使CO₂减排10%,通过添加CCS,可使CO2减排30%。当前,正在新日铁君津制铁所建设的试验高炉中进行测试,并预计在2022财年进行商业高炉验证测试,于2030年实现商业化。
在欧盟的支持下,包括工程公司在内的欧洲钢铁企业于2004年开始研发,在全氧高炉的基础上,将高炉炉顶煤气分离CO₂后的还原性气体再循环利用的ULCOS(超低CO₂排放炼铁)项目。分离的CO₂通过CCS隔离。ULCOS项目还包括HIsarna熔融还原工艺的开发,ULCOS项目的主体是高炉炉顶煤气的循环。已在瑞典卢基矿业公司的试验高炉得到验证,据报道,高炉阶段输入碳减少了25%。尽管该项目在开始实施后不久就被关注,但高炉炉顶煤气循环的商业用炉试验后的下一步并未实施,被中断。据推测,试验费用问题是根本原因,但对未来发展潜力和波及效应的判断也产生了影响。对于大型项目,参与组织的可持续性也是一个重要因素。
图3所示为这些传统提议技术的CO₂减排潜力与长期目标之间的比较。已经提出了各种技术方案,形成了初始技术框架,评估工作正在进行中。另一方面,将会看到与综合钢铁厂能源完整性的偏离以及碳利用效率理论上的定量性限制。由于高炉顶部煤气循环导致向下游工序供应能量不足,因此对其补充也必须同时评估。以热盘卷为基准,ULCOS的炉顶煤气循环减少15%。图2所示的高炉基础改进技术除CCS之外,CO₂减排量只有约10%-15%。由于原理重复,很难建立各项技术的加成性。通过现有工艺技术改进的推进,实现2050年长期目标存在很大差距。尽管目标设定采用了回溯思维,但是像钢铁这样已经拥有大型设施的材料行业也有必要进行预测性探讨。如图3所示,不仅需要确定目标优先级的口号,还需要提出具有技术前景的工艺方案,期待能够弥补这个差距的创新技术出现。
针对2050年目标,EUROFER(欧洲钢铁协会)于2013年根据各项新技术的积累能够减排CO₂的程度,提出了看法。一项假设的工艺研究表明,有效利用还原铁工艺最多可以减排40%的CO₂,而高炉炉顶煤气循环与CCS的组合可以使CO₂减排量达到57%。同时,进行了成本估算,伴随着设备改造和转换等减排CO₂设备的引进,成本大幅度上升,由CAPEX(资本支出)和OPEX(运营支出)显示出具体数字。成本估算表明,在特定区域实施减排CO₂,由于产品价格差距等,缺乏统一性,因此实施减排CO₂需要全球性展开。此外,尽管CCS具有很好的效果,但由于地域环境等因素,CCS的社会接受度存在问题,并且大规模投资加重负担,其可行性受到了质疑。这不仅影响响应目标设定,而且涉及到今后课题、论点路线图的制定。
减排CO₂是全球钢铁生产国共同面临的问题,大宗商品的钢铁产品是国际商品,只在特定国家实施减排CO₂,效果甚微。钢铁业是成长性产业。开发的工艺只有应用到生产设备时,效果才会显现。因此,作为具有满足客户需求的生产设施的材料行业,很难制定执行计划。只有从事钢铁生产的企业步调一致地采用新工艺时,效果才会显现。另外,减排CO₂不是追求利润。减排CO₂的开发工作受到好评,建立与减排CO₂的增量成本负担相当的、具有公平性的社会制度至关重要。需要所有从事钢铁生产的国家都以相同的价值观在全球范围内部署技术,否则没有实效性。
4开启旨在深度减排CO₂的技术开发
如果将大量减排CO₂的长期目标落实到现有的钢铁厂,则将考虑各种形式,例如在生产工艺和设备上进行重大改变,使其远离煤炭,或者隔离排放的CO₂,但这很难想象。日本的钢铁厂已推进彻底节能,虽然依赖煤炭,但形成了一个能源完全循环链。另一方面,高炉寿命超过20年,从钢铁厂设备更新来看,虽说到2050年,但也不是遥远的未来。即使针对长期目标,描绘了理想前景,钢铁业作为原材料产业,是日本活力的源泉,在担负起将高品质钢铁产品平稳供应给用户责任的同时,如何改变现实中看到的大型钢厂,通往未来之路并不容易。也涉及到今后的设备更新计划。将这种现实感与未来想象联系起来是一种挑战,但这是超越传统钢铁技术框架的关键一步,包括扩大视野、与周边产业建立联系以及整个国家的能源使用等。从整体观点来看,构筑未来前景的关键似乎是实现长期目标。
当前,与以往不同的技术开发新流程已经开始萌芽。世界的新潮流正在从改善高炉的碳利用到向再利用CO₂的CCU转换以及向利用不含CO₂的氢气进行脱碳处理的转换。未来发展概念认为,CO₂不是废弃物,而是有利用价值的资源,作为化学制品原料之一融合思考的CCU以及根据可再生能源利用,通过水电解生产清洁氢气,作为还原材、能源利用实现脱碳目标的CDA(直接避免碳),都是为提高减排CO₂潜力而实施的项目。
德国蒂森克虏伯公司已启动名为Carbon2Chem的CCU项目。Carbon是指CO₂,Chem指的是化学产品。目前的化工产业依赖于化石原料。构想将钢铁厂排放的含有CO₂的废气作为原料,生产甲醇等各种化学产品。这是包括化工行业在内的产业间联合,跨行业网络,是在整个产业范围内减排CO₂的概念,称之为集成式CO₂捕获。在Carbon2Chem的化学转换中添加氢是必不可少的。德国倡议的Power to Gas也与此相关联,将不稳定且不能存储的可再生能源转换为可存储的氢或甲烷,并将其稳定地供应给国内市场。蒂森克虏伯公司在国家的支持下,在杜伊斯堡炼铁厂建立了研究中心,以开发Carbon2Chem关键技术。此外,该公司还宣布了具体方案,计划在2030年将该技术商业化,在2050年,加上氢利用,使CO₂减排80%。制氢研究将与法国液空公司合作进行。安赛乐米塔尔公司已启动名为Steelanol的项目,该项目利用生物技术将钢铁厂的废气转化为乙醇等合成燃料。美国朗泽科技公司的发酵技术是核心技术,使用了通过基因转换而改良的发酵菌。该公司根特钢铁厂正在建设一座47000吨/年的中等乙醇生产厂。所有这些都需要进行LCA评估。新的开发趋势是灵活利用现有钢铁厂的功能发展系统工艺,将当前化学工业中由化石原料生产的燃料和化学制品,用钢铁厂废气制造的产品取代。
在瑞典、奥地利和德国,作为深度脱碳的方法,提出使用源自可再生能源不含CO₂的电力,通过水电解制造氢,将氢用作还原剂还原铁矿石的氢炼铁工艺。还原使用竖炉直接还原工艺。瑞典钢铁公司和瑞典卢基矿业公司已开始HYBRIT(氢突破制铁技术)项目、奥钢联集团与西门子公司共同开始H2FUTURE项目、德国的萨尔茨吉特已开始SALCOS(萨尔茨吉特低CO₂炼钢)项目的试验工厂规模的研究。这些都是在寻求欧盟或政府公共资金的支持。直接还原工艺利用现有的MIDREX或TENOVA-HYL 系统的ENERGIRON工艺,在电炉中进行熔炼。安赛乐米塔尔采用与CCU并行,利用德国汉堡现有的MIDREX还原铁设备着手开发10万吨/年的氢制铁生产。普锐特冶金公司着手利用氢气还原铁矿粉用流化床的开发,并宣布将于2020年开始试验工厂的运行。对于利用来自可再生能源的电力生产氢的水电解工艺,已经提出了诸如碱性电解、PEM(质子交换膜)和固体氧化物SOEC(固体氧化物电解池)等方案。但
可再生能源转换为可存储的氢或甲烷,并将其稳定地供应给国内市场。蒂森克虏伯公司在国家的支持下,在杜伊斯堡炼铁厂建立了研究中心,以开发Carbon2Chem关键技术。此外,该公司还宣布了具体方案,计划在2030年将该技术商业化,在2050年,加上氢利用,使CO₂减排80%。制氢研究将与法国液空公司合作进行。安赛乐米塔尔公司已启动名为Steelanol的项目,该项目利用生物技术将钢铁厂的废气转化为乙醇等合成燃料。美国朗泽科技公司的发酵技术是核心技术,使用了通过基因转换而改良的发酵菌。该公司根特钢铁厂正在建设一座47000吨/年的中等乙醇生产厂。所有这些都需要进行LCA评估。新的开发趋势是灵活利用现有钢铁厂的功能发展系统工艺,将当前化学工业中由化石原料生产的燃料和化学制品,用钢铁厂废气制造的产品取代。
在瑞典、奥地利和德国,作为深度脱碳的方法,提出使用源自可再生能源不含CO₂的电力,通过水电解制造氢,将氢用作还原剂还原铁矿石的氢炼铁工艺。还原使用竖炉直接还原工艺。瑞典钢铁公司和瑞典卢基矿业公司已开始HYBRIT(氢突破制铁技术)项目、奥钢联集团与西门子公司共同开始H2FUTURE项目、德国的萨尔茨吉特已开始SALCOS(萨尔茨吉特低CO₂炼钢)项目的试验工厂规模的研究。这些都是在寻求欧盟或政府公共资金的支持。直接还原工艺利用现有的MIDREX或TENOVA-HYL 系统的ENERGIRON工艺,在电炉中进行熔炼。安赛乐米塔尔采用与CCU并行,利用德国汉堡现有的MIDREX还原铁设备着手开发10万吨/年的氢制铁生产。普锐特冶金公司着手利用氢气还原铁矿粉用流化床的开发,并宣布将于2020年开始试验工厂的运行。对于利用来自可再生能源的电力生产氢的水电解工艺,已经提出了诸如碱性电解、PEM(质子交换膜)和固体氧化物SOEC(固体氧化物电解池)等方案。但已加入H2FUTURE的西门子专注于PEM研究,并正在奥钢联的林茨钢铁厂建设6MW水电解试验设备。德国萨尔茨吉特与德国Sunfire公司合作开发SOEC技术。每个项目不仅包括钢铁企业,还包括具有高产氢潜力的能源相关企业、工程公司和财团。还原炉利用现有工艺作为基础技术,在最近几年中,试验工厂的建设、运营及开发较活跃。另一方面,这些项目都是在验证阶段,存在许多不安定因素,如与氢供应的兼容性以及对现有钢铁厂的适用性等。从技术角度来看,存在诸如非碳化还原铁的熔融精炼、通过氢还原能够控制较大吸热反应的竖炉设计等问题,作为新时代技术引人注目。
日本铁钢联盟于2018年11月制定了《地球变暖对策长期愿景》,为应对长期目标提出了“挑战零碳钢”构想。这是2030-2100年适用范围设定的挑战目标。虽然没有提出未来的方案或具体的工艺构想概念,但关键点在于与海外联合,实现无CO₂的氢利用,包括CCU和CCS。
5构建未来钢铁愿景与今后的展望
目前,炼铁的主要课题,如资源响应力、节能等炼铁工艺范畴内的研发已经完成。关于今后钢铁业减排CO₂的问题,仅通过传统研究如钢铁工艺改进以及逐步技术改革,不可能实现目标。认识到局限性,因此正在从实现地球环境问题的长期目标出发,向扩展其框架和技术对象,以从多个角度掌握钢铁工艺的方向转变。将钢铁厂排放的含有CO₂的废气转化为化学制品原料,促进行业间的合作,以减少跨行业的CO₂排放,并考虑从清洁能源生产中设计炼铁生产工艺等,这是一个重组,包括化学、能源领域的大型框架。SCU(智能碳使用)是包括CCU、还原铁利用、碳循环等在内新的碳利用统称。可再生能源、水电解制氢属于其他领域,与钢铁分离,但是如果没有它,就无法实现脱碳炼铁。依赖于碳元素的现行工艺是将碳元素作为还原材料,形成从炼铁工序产生的能量供应下游工序的能源系统,具有独立的完整性,但由此也带来制约。氢制铁是还原材料、能源本身的转换。必须引起注意的是,炼铁工序没有能量供应功能,氢气和电力被消耗,并且下游工序能源的使用方式也会发生变化。虽然会在更大的框架下思考,但自由度会增加。CCU对于与化学相联系的碳循环的想法也是有用的,如将转化为化学制品过程中产生的合成还原材料等中间物质向钢铁工艺回流等,可能会有多种发展。
氢是二次能源,最理想的是使用可再生能源生产的不含CO₂的氢,但是必须对氢的生产、运输和存储等全过程的绿色程度进行全面评估。在欧洲,这项研究是先行的,CertifHy项目定义了绿色氢源,并提出了定量评估方法。
再来看日本的情况,如上所述,钢铁业主要由大型钢铁厂构成,考虑到生产优质钢铁产品并提供给用户的作用,制造工艺的转换并不容易。尤其是日本钢铁厂是在60年代沿海钢厂的理念下建造的,后经不断改进,运行已经50多年,基本的基础设施正在老化。而东亚地区正在陆续建造大型的新钢铁厂,并且钢铁厂形态正在发生变化。在日本尚未普及的节能设备正在东亚被积极采用。聚焦2050年,全球环境问题通常被视为制约因素,但它也是促进向新技术转换的契机。
钢铁产生的CO₂排放量取决于生产量和CO₂排放强度。人们常常倾向于只关注针对未来目标的CO₂排放强度。但可以在基本方向上进行选择,是强调适应规模的意义,还是从一开始就追求理想形态,优先考虑CO₂减排潜力。氢炼铁接近所追求的CO₂减排潜力。上述正在进行开发的瑞典的粗钢产量为470万吨/年,奥地利的粗钢产量为690万吨/年。从两国的规模来看,并非不可能实现。可以成为一个标杆式的存在。SCU基于当前工艺,其路线很容易理解。随着使用技术的发展,适用性也在扩展。最佳形态会根据应用区域、条件而变化。日本是资源进口国,由于地理条件的原因,很难像欧洲的“Power to Gas”那样,在广阔的地域进行再生能源利用等,实现能源相互利用。日本钢铁企业是由大型综合钢铁厂构成,生产多品种生产。需要符合日本国情的独立发展路线图。尽管各种选择的性质不同,但扩大规模和减排潜力两者共同推进是理想的选择。减排CO₂技术是所有行业和世界钢铁工业共同面对的全球性问题,在技术开发中,希望实现跨行业协作,国际合作和角色分担。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,由隆基氢能联合国际能源巨头ACWAPower、中国电建华东院共同打造的乌兹别克斯坦塔什干绿氢项目(以下简称“乌兹绿氢项目”)成功实现产氢,为全面投产奠定了坚实基础。这标志着隆基氢能在中亚地区的首个大型绿氢项目取得里程碑式突破,为全球能源转型提供了“中国技术+国际协作”的典范案例。成功
当前,氢能已成为世界各国推动能源转型、培育经济增长点以及促进可持续发展的重要战略选择。我国高度重视氢能产业的发展,出台《氢能产业发展中长期规划(2021~2035年)》明确氢的能源属性,2024年政府工作报告将氢能纳入前沿新兴产业,《能源法》赋予氢能法定能源地位,国家设立万亿级创业投资引导基
北极星电力网获悉,6月29日,中煤宝山2×650MW超超临界煤电(煤气掺烧)替代扩建项目锅炉房第一罐混凝土进行浇筑,标志着该项目正式进入全面建设阶段。中煤宝山2×650MW超超临界煤电(煤气掺烧)替代扩建项目位于上海市宝山区宝钢股份宝山基地厂内,计划建设2台650MW超超临界二次再热机组,并同步建设高
各地氢能发展虽然已取得一定进展,但仍面临一些问题和挑战,涉及基础设施、成本、技术等多个方面,这些方面往往相互交织,有时互为因果。来源:电联新媒作者:郑平近年来,国内多地将发展氢能作为促进产业发展和实现碳达峰、碳中和目标的重要抓手,推出不同层面的氢能发展规划,并投入大量资源推动具体
2025年6月19日,欧洲议会在法国斯特拉斯堡通过《清洁工业协议决议》及《电网自主倡议报告》,旨在推动欧盟工业脱碳进程并提升能源系统灵活性。《清洁工业协议决议》核心内容该决议聚焦工业部门的绿色转型,提出以下措施:能源成本降低:通过《可负担能源行动计划》推广清洁能源,目标到2030年将欧盟能
一边是海上风电超长的产业链系统,一边是有雄厚基础的国家老牌工业基地。当辽宁省绿色发展与海上风电产业相互碰撞,会擦出什么样的火花?在日前召开的2025海上风电大会上,辽宁省发改委主任周轶赢指出:辽宁将发挥工业基础优势,争做世界风电产业中心先进装备制造领跑者,为全球绿色可持续发展提供辽宁
近日,湖南省工业和信息化厅公布首批工业领域低碳氢应用场景名单。三一氢能有限公司两大标杆项目——“氢基低碳冶金与保护技术应用示范项目”(与湖南涟钢联合实施)与“绿电制氢加氢一体站及氢交通示范项目”成功入选。这标志着三一氢能在推动绿氢规模化工业应用、助力高碳行业深度脱碳方面取得实质性
6月24日-26日,世界经济论坛第16届新领军者年会在天津举行,李强总理出席开幕式并发表特别致辞。此外,来自90多个国家和地区的1700余名政、商、学、媒体界代表参会。全球领先的光储企业晶科能源受邀出席峰会,并参加李强总理与领军企业闭门会议,以及“新能源治沙”、“全球碎片化格局下的制造业”、“
北极星氢能网获悉,6月20日,吉电股份发布公告称,其控股子公司上海吉远绿色能源有限公司的全资子公司吉远(四平)绿色能源有限公司,拟投资49.2亿元建设梨树绿色甲醇创新示范项目。根据公告,该项目位于吉林省四平市梨树县。新能源部分规划布局风电装机规模40万千瓦,新建一座220千伏升压站,配套建设
在当今商业环境中,企业对社会责任和可持续发展的重视程度日益提高,其信息披露的透明度和真实性成为衡量企业品质的关键因素。2025年5月,Leverage再次为正泰电气股份有限公司(以下简称“正泰电气”)发布的《2024年度环境、社会与治理(ESG)报告》提供了第三方独立鉴证服务。Leverage依照AA1000审验
国际油服巨头要用百亿家产,换一张“新船票”!(来源:石油Link文|木兰)国际油价波动、能源转型加速、传统油气投资放缓……多重压力下,全球油服行业正经历一场深刻的战略调整。2025年6月,油服巨头贝克休斯宣布以11.5亿美元的价格,将旗下精密传感器与仪器(PSI)业务出售给工业制造集团克兰公司(C
北极星碳管家网获悉,日前,工业和信息化部生态环境部国家发展改革委市场监管总局四部门联合发布工业产品碳足迹核算规则团体标准推荐清单(第二批)。第二批推荐清单共计23项团体标准,包含冶金焦炭、锂电池材料。需要注意的是,与公示文件不同,正式文件减少了《温室气体产品碳足迹量化方法与要求光缆
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
贸易战背景下,中越地理位置可能成为深层次能源合作的基础。(来源:微信公众号“能源新媒”作者:罗佐县)中越两国山水相邻,双方经济社会联系交往紧密,有着深厚的历史渊源。近年越南通过大力推动对外开放、依托人口红利和接纳产业转移等手段成功实现了经济腾飞,成为东南亚乃至全球经济增长最快的经
今天是2025年“全国低碳日”,今年的主题是“碳路先锋、绿动未来”。习近平总书记指出,要正确处理好经济发展同生态环境保护的关系,作为国有重要骨干企业,中国石油油气田企业将生态环境分区管控作为项目选址的刚性约束,对生态保护红线内的生产经营设施有序退出,积极实施生态修复。截至目前,油气田
在SNEC2025光伏与智慧能源大会上现场,远东储能携全新源网侧解决方案——PowerSTROM7000液冷储能集装箱重磅亮相,并在同期举办的储能新品发布会上正式发布,引发了业界的广泛关注。远东电池合伙人、产品及方案部高级总监马成龙在发布现场分享了对当前储能行业趋势的深入判断。他指出:“储能市场已从价
2025年,136号文、394号文、江苏分时电价等政策的落地,标志着储能行业进入“价值竞争”的新纪元。强制配储政策的取消与电价市场化机制的推进,终结了“低价内卷”的野蛮生长阶段,倒逼企业从“规模扩张”转向“技术深耕”,从“设备堆砌”转向“价值创造”。站在储能行业新一轮变革的起点,企业的核心
北极星氢能网获悉,6月13日,由中船集团上海船舶研究设计院(SDARI)自主研发设计、中船黄埔文冲船舶有限公司为天津西南海运有限公司建造的25000方LPG/液氨运输船正式开工建造。该船是国内首艘氨双燃料动力液化气运输船,入级中国船级社,标志着我国在清洁能源船舶领域新的突破。该船采用领先的氨双燃
北极星氢能网获悉,6月16日,新疆山能化工有限公司准东五彩湾80万吨年煤制烯烃项目电解水制氢装置基础设计服务公开招标。根据招标公告,新疆山能化工有限公司准东五彩湾80万吨年/煤制烯烃项目以准东五彩湾四号露天矿煤为原料,经粉煤加压气化、变换及热回收、低温甲醇洗、甲醇合成生产MTO级甲醇(中间
近日,同兴科技正式加入全球碳捕集与封存研究院(以下简称GCCSI),标志着同兴科技碳捕集、利用与封存(CCUS)技术实力获得国际权威机构认可,进一步提升了同兴科技全球品牌影响力。同兴科技将在GCCSI平台上与全球顶尖企业和科研机构深化技术交流合作,推动CCUS技术创新,共同应对气候变化,助力实现全
随着储能的应用场景越来越多样,储能的生命力也更“鲜活”。机遇常常伴随挑战,储能领域也正经历着从“价格竞争”向“价值回归”的蜕变阵痛之中,储能产品的安全与效率面临更严峻的考验。01、新挑战、新机遇、新市场2025年4月,欧洲一场大规模停电使西班牙、法国、葡萄牙和德国等多个国家的医疗、交通
截至2025年4月,全球运行的CO捕集和封存能力略高于5000万吨,较一年前有所提升。与此同时,到2030年,封存能力可能达到6.7亿吨CO,与此前数据库更新相比增加了10%。CCUS项目数据库对2030年前项目管道数据的梳理显示,行业更注重推进现有项目,而非规划新项目。若当前在建项目全部完成,现有产能将几乎
7月1日,江苏省无锡市人民政府办公室发布关于印发无锡市加快构建碳排放双控制度体系工作方案的通知。通知指出,“十五五”时期,实施以强度控制为主、总量控制为辅的碳排放双控制度,将碳排放指标纳入国民经济和社会发展规划,加强重点行业领域碳排放核算能力,健全重点用能和碳排放单位管理制度,开展
6月30日,无锡市人民政府发布无锡市零碳园区建设三年行动方案(2025—2027年)的通知,通知指出,依托国网无锡供电公司,建立无锡市虚拟电厂管理中心,完善虚拟电厂运营管理制度,统筹市级、区级虚拟电厂和公共建筑、充(换)电设施、数据中心等具体场景虚拟电厂建设工作,逐步推进新型储能、分布式光
北极星氢能网获悉,6月24日,上海市海洋局发布关于公开征求《上海市海洋产业发展规划(2025-2035)(征求意见稿)》意见的公告。文件指出,大力支持新能源船舶的研发和应用以及传统船舶的低碳化转型,加快研制新一代双燃料环保船、液氢运输船和电动船舶,加快LNG、甲醇、液氨、氢等燃料动力船型的研制
面向加快建设新型能源体系、新型电力系统的国家重大战略需求,可深度调峰的灵活性煤电起到了促进电网接纳高比例新能源,同时保障电力系统安全、经济、低碳运行的关键作用。国务院《2030年前碳达峰行动方案》明确,推动煤电向基础保障性和系统调节性电源并重转型。煤电灵活性改造工作的不断推进,为加快
今天是2025年“全国低碳日”,今年的主题是“碳路先锋、绿动未来”。习近平总书记指出,要正确处理好经济发展同生态环境保护的关系,作为国有重要骨干企业,中国石油油气田企业将生态环境分区管控作为项目选址的刚性约束,对生态保护红线内的生产经营设施有序退出,积极实施生态修复。截至目前,油气田
近日,中国电力企业联合会公布2024年度电力行业火电机组能效水平对标结果,国家能源集团有14台火电机组分别获评不同兆瓦级AAAAA级火电机组荣誉称号,代表了电力行业领先水平,这些火电机组正以“5A”实力,节能增效,焕“新”引领,全力应对迎峰度夏大考。国家能源集团都有哪些“5A”级火电机组上榜?
AI赋能电力产业:变革、挑战与对策中国海油集团能源经济研究院韩广忠王建明近年来,人工智能(AI)技术正以前所未有的速度改变着各行各业,全球电力产业无疑成为获得益处与遭受冲击最为明显的领域之一。从能源生产、输配到消费管理,AI正在全方位推动产业升级,促进数字化转型,并为实现低碳发展和可持
能源与产业协同转型推进中国式现代化全球能源互联网发展合作组织副秘书长周原冰在全面推进中国式现代化的新征程上,能源与产业转型升级已成为落实“双碳”目标、实现高质量发展、打造国际竞争新优势的关键抓手。今年是“十四五”规划收官之年,也是“十五五”规划谋篇布局之年,值此承前启后的关键节点
6月18日,中国海油党组书记、董事长张传江赴有限公司工作调研,与领导班子成员、相关部门负责同志座谈交流,详细了解有限公司深入学习贯彻习近平总书记系列重要指示批示精神举措及2025年生产经营重点工作进展,听取意见建议,提出工作要求。张传江强调,要充分认清当前面临的形势任务,积极应对困难挑
6月6日,经中央组织部宣布,张传江正式调任中国海洋石油集团有限公司董事长、党组书记,免去其中国大唐集团有限公司董事、总经理、党组副书记职务。6月18日,履新不足半月,张传江赴集团下属中国海洋石油有限公司工作调研,在听取工作汇报并进行座谈交流后,他对有限公司下一步重点工作作出部署,他强
6月18日,中国海油党组书记、董事长张传江赴有限公司工作调研,与领导班子成员、相关部门负责同志座谈交流,详细了解有限公司深入学习贯彻习近平总书记系列重要指示批示精神举措及2025年生产经营重点工作进展,听取意见建议,提出工作要求。张传江强调,要充分认清当前面临的形势任务,积极应对困难挑
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!