登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
滤池工作原理概述如下:
滤池闲置期,石英砂在自身重力作用下,处于压实状态。运行初期,原水首先从进水阀进入配水渠,然后沿配水槽跌落经石英砂过滤后由滤池底部的清水管引至清水池。随着运行时间的延长,石英砂截留杂质越来越多,滤层阻力不断增大,滤池水位逐渐上升,当滤池水位上升到一定高度后,滤池过滤效果明显下降,此时需对滤池进行反冲洗。反冲洗时,开反冲洗水泵和滤池底部的反冲洗水阀,反洗水逆流而上,待石英砂充分膨化后,开鼓风机,待风机工作稳定后,打开进气阀反冲洗水排水阀门,对滤料进行气、水反冲,5~8min后,关闭进气阀和鼓风机,仅对滤料进行水反冲,2~4min后,冲洗结束,关闭冲洗水泵、反冲洗水阀,打开原水进水阀,进行表面扫洗,1~4min后,扫洗结束,关闭反冲洗水排水阀门,打开清水阀,滤池进入下一周期的工作。
反冲洗时,石英砂滤料在重力和水流作用下处于膨化状态,反洗下来的泥水进排水槽(进水时为配水槽),由反冲洗水排水阀门将反冲洗水排走。反冲洗结束后,石英砂滤料在重力作用下沉降压实,形成上稀下密的过滤层,更有利于杂质的截留。
本工程设计反冲洗强度如下:
气水反冲,气冲:55m3/m2/h;水冲:10m3/m2/h;
单水冲:17m3/m2/h;
砂滤池反冲洗水处理技术
净水厂砂滤池反洗水(FBWW)是以“混凝-沉淀- 过滤- 消毒”组成的常规水处理工艺的滤池清洗废水,即为清除砂滤池过滤所截留的污染物以使其恢复过滤截污能力而产生的废水。FBWW杂质主要由悬浮颗粒物、胶体杂质、细菌和细碎的絮凝体等组成。我国FBWW 约占水厂总产水量的1.5%~5%。目前国内大多数净水厂对FBWW 均直接排放,不仅致使水资源浪费,且会对受纳水体造成污染,因此将砂滤池反洗水进行安全有效回用,节约水资源,符合可持续发展社会的理念。
然而,如FBWW 作为净水厂原水直接回用于处理系统中,将持续增加混凝- 沉淀单元的有机物和微生物负荷,有可能导致出水溶解性有机物(DOM)含量增加以及微生物泄露的问题。出水DOM 的增加会导致后续加氯消毒过程中三氯甲烷(THMs)和卤乙酸(HAAs)等消毒副产物(DBPs)生成量增加,这类物质具有致癌作用,会对人们的健康造成隐患。因此,应对FBWW进行必要处理后进行回用。
美国国家环境保护局(USE-PA)推荐去除DBPs 前质的方法有混凝、粒状活性炭(GAC)吸附和膜过滤等,其中混凝被列为控制DOM 的首要方法。超滤(UF)技术对水中的颗粒物、胶体、细菌和大分子有机物具有较好的截留作用。混凝过程中投加粉末活性炭(PAC)可提高溶解性有机物去除效果,减小UF 膜通量的下降速率。因此,本试验拟采用混凝- PAC-UF 工艺对砂滤反冲洗水进行处理,为净水厂FBWW回用提供技术支持和理论依据。
1、材料与方法
1.1、原水水质
试验在苏州市某水厂中试基地内进行。FBWW与太湖原水的水质参数见表1 所示。
因此,与太湖水相比较,FBWW 浊度、有机物指标(UV254,DOC 含量和COD)均较高,如果作为净水处理厂的原水进行回用,将增加水厂各处理单元的负荷。
1.2、试验装置和流程
试验采用的UF 膜组件为改性聚氯乙烯中空纤维UF 膜。膜组件膜丝内外径为1.0mm×1.65 mm,平均孔径0.171 5 m,孔隙率77.75%,起始水接触角为32.4°,有效膜面积为0.133 m2,设计产水量为70~90L/(m2˙h)。试验选用内压式UF 膜,过滤方式为恒通量,死端过滤,膜运行通量为70 L/(m2˙h),工艺流程如图1 所示。
试验采用的混凝剂为聚合硫酸铁(PFS),Fe 的质量分数为20%,Fe(II)质量分数小于0.05%。PAC,外观呈粉末状,黑色;过筛孔75 μm 的质量分数为90%,碘值(最小)为900mg/g,亚甲基蓝值199mg/g。
1.3、分析方法
浊度测定采用HACH 2100N 浊度仪,DOC 测定采用OI 1030W 总有机碳测定仪,UV254采用ThermoEvolution300 紫外可见分光光度计测定,DOC 含量和UV254测定前使用0.45 m膜过滤。三卤甲烷生成潜能(THMFP)测定时,先向水样中投加次氯酸钠,然后用磷酸缓冲溶液调节pH 至7,恒温无光放置24h 后使用顶空气相色谱法测定THMs 含量。
2、结果与讨论
2.1、PAC 吸附强化混凝
2.1.1、PAC 投加量对去除效果的影响
取一系列细口瓶,加入FBWW 原水,PAC 投加量分别为5、10、15、20、30、50、80 mg/L,搅拌均匀静置30 min 后测定UV254和DOC 的质量浓度,确定PAC合理投加量,结果如图2 所示。
由图2 可知,在5~30 mg/L 时,随着PAC 的投加量增加,DOC 和UV254的去除率随之增加,当PAC的投加量自30 mg/L 继续增加时,去除率上升趋势开始平缓,说明继续增加投加量对有机物的去除贡献不大。且当PAC 投加量由15 增加至30 mg/L 时,PAC投加量的增加带来的有机物去除效果增加不明显,同时考虑到投加PAC 的技术经济因素,后续中试中选择PAC 投加量为15 mg/L。
2.1.2 PAC 投加时间对去除效果的影响
参照李开伟等在苏州某水厂的小试参数,本试验PAC 吸附强化混凝采用PFS 作为混凝剂,投加量为8 mg/L[5]。搅拌方式为为在FBWW原水中投加8mg/L 的PFS,以250 r/min 快速混合15s,再以180r/min 搅拌30 min,再静置沉淀30 min,整个混凝过程HRT 为60 min。
分别在混凝进行至5、10、15、20、25、30 min 时投加PAC,混凝结束后后分析上清液UV254和DOC 去除率,确定PAC 最佳投加时间点。结果如图3 所示。
从图3 可知,在混凝过程进行到25 min 和30min 时投加PAC 对DOC 和UV254去除率分别约为27%和55%,此时PAC 的吸附时间为30~35 min。投加时间小于25 min 即吸附时间大于30 min 时,随着吸附时间的增加,有机物的去除率反而呈下降趋势,这可能是过早投加PAC 导致PAC 颗粒被絮凝体包裹从而影响PAC 对有机物的吸附作用。因此,在后续的组合工艺中,将混凝进行25 min 作为优化PAC 的投加时间点,此时吸附时间为35 min,以期获得较好的有机物去除率的同时减少混凝搅拌时间。
2.2、组合工艺处理效果
2.2.1、浊度
浊度是用来表征水中胶体物质和悬浮颗粒含量的感官性状指标。水中的胶体和悬浮颗粒不仅会影响水的感官性状,同时也是水中各种细菌、病毒、污染物的载体,也是饮用水处理的主要去除对象。组合工艺对浊度的去除效果见图4。
由图4 可知,FBWW 原水的浊度在60.5~151.0 NTU,平均为91.5 NTU,在净水厂沉淀池中未被去除的大量矾花被截留在砂滤池中,因此FBWW具有较好的沉降性能,取样时间和放置时间的不同导致其浊度波动较大。混凝+PAC 出水浊度在0.65~1.0 NTU,平均为0.75 NTU,说明混凝+PAC可以显著去除FBWW 中的悬浮颗粒物,减轻后续UF 处理负荷。UF 出水浊度在0.1~0.19 NTU,平均为0.14 NTU,平均去除率为99.8%,该组合工艺对浊度去除效果显著。这是因为混凝以去除水中的胶体和细小悬浮物为主,在一定含量范围内投加的PAC颗粒物质均会被混凝去除。UF 出水浊度均保持在较低水平,这表明UF 膜可有效地截留混凝形成的矾花、拦截PAC 颗粒物质等污染物质。
2.2.2、DOC
DOC 包含的碳通过燃烧或化学氧化转化成二氧化碳,因此通过红外吸收测定了二氧化碳的量,表征了水体受溶解性有机物污染的程度。混凝可以通过吸附电中和、架桥、网捕等作用去除DOC,PAC 主要通过物理吸附作用去除DOC,另外,UF 膜对有机物的去除主要通过筛分和吸附作用。试验组合工艺在PAC 投加量为15 mg/L 时对DOC 的去除效果的如图5 所示。
由图5 可知,混凝+PAC 出水和混凝+PAC+UF出水DOC 的质量浓度平均分别为3.61 和2.55 mg/L。该组合工艺混凝+PAC 出水和最终UF 出水的DOC去除率与FBWW原水DOC 含量变化趋势基本一致,FBWW 原水DOC 的质量浓度为3.21~6.43 mg/L,平均4.99 mg/L,最终UF 出水DOC 去除率23.19%~48.95%(平均40.54%),可见原水DOC 对该组合工艺的DOC 去除率有较大影响,但最终UF 出水的DOC 波动不大(质量浓度2.02~3.11 mg/L),说明该组合工艺能够在原水水质一定变化情况下保证出水水质的稳定。
2.2.3、UV254
UV254主要反映芳香族化合物或具有共轭双键的化合物,可以用来表示水中大分子、疏水性有机物腐殖酸的含量。在水处理中,UV254可作THMFP 等指标的替代参数,此外UV254还与三致物质(致畸变、致癌变、致癌变)和消毒副产物(DBPs)前驱物有良好的相关性。
组合工艺各阶段出水的UV254去除情况如图6所示。FBWW原水的UV254为0.044~0.076 cm-1,平均0.063 cm-1。
由图6 可知,混凝+PAC 出水的UV254为0.03~0.43 cm-1,平均为0.037 cm-1;混凝+PAC+UF 出水的UV254为0.024~0.036 cm-1,平均为0.031 cm-1。混凝+PAC 和混凝+PAC+UF 对UV254的去除率平均分别为42.23%和51.39%。该组合工艺对UV254的去除率要高于对DOC 的40.54%的去除率,说明该组合工艺对于大分子、疏水性腐殖类有机物去除率较高。
2.2.4、去除亲疏水性有机物
比紫外吸光度(SUVA)的大小反应了水中亲疏水性有机物的比例,较高说明水中大分子、疏水性腐殖类有机物较多,较低说明小分子、亲水性有机物较多。因此可以通过对各阶段出水SUVA 的分析比较,定性分析该组合工艺对FBWW 中亲疏水性有机物的去除效果。
SUVA=100UV254 /ρ(DOC)。
组合工艺SUVA 的变化见图7。
从图7 可以看出,混凝+PAC+UF 出水与FBWW原水的SUVA 变化趋势基本一致,而混凝+PAC 出水与FBWW 原水SUVA 的变化趋势相关性较差。FBWW 原水SUVA 为1.13~1.53 mg/(L˙cm)(平均1.32 mg/(L˙cm)),混凝+PAC 出水混凝+PAC+UF出水和SUVA 分别为0.078~1.20 和0.097~1.21mg/(L˙cm),平均分别为1.03 和1.12 mg/(L˙cm)。
FBWW原水经过混凝+PAC 出水较原水SUVA有一定降低,疏水性物质比例有所降低,这表明混凝+PAC 去除疏水性有机物的比例较亲水性有机物高,而混凝+PAC+UF 出水SUVA 又有一定程度的上升,疏水性比例提高,亲水性物质物质比例有所下降,这表明UF 在这个组合工艺中去除的亲性有机物比例较疏水性有机物高。总体来看,该组合工艺对疏水性有机物去除率大于对亲水性有机物去除率。
2.2.5 THMFP
THMFP 是指水样在一定加氯反应条件下生成三卤甲烷(THMs)的量,表征了该水样在后续消毒过程中产生THMs 的能力。本试验THMFP 的测定方法如下:向待处理水样中投加量为10 mg/L 的NaClO,然后用磷酸缓冲溶液调节pH 至7,恒温无光静置培养24 h 以保证THMs 生成反应完全,所检测THMs 生成量如表2 所示,其中去除率为组合工艺各阶段出水相较于FBWW的去除率。
从表2 可以看出,CHCl3、CHBrCl2、CHBr2Cl、CHBr3和总量均符合GB 5749-2006 的规定,也低于美国国家环境保护局饮用水标准(EPA 822-R-04-005)的80 μg/L[8-9]。与未经处理FBWW相比,THMs生成量经过混凝降低了72.15%,PAC 强化混凝THMs生成量相比FBWW降低了78.75%,这说明通过此工艺可以高效的去除消毒副产物前质。THMs 的形成主要是DOM和微生物残体与氯反应的结果,大多数DOM 的去除完成在混凝阶段,此工艺能够高效去除DOM,从而降低废水回用过程中THMs 的生成量。具体参见http://www.dowater.com更多相关技术文档。
3、结论
PAC 吸附试验表明,当PAC 投加量超过15 mg/L时,继续增加PAC 投加量对有机污染物的去除效果提高作用有限,考虑技术经济因素确定15 mg/L 为PAC 的合适投加量
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
7月16日,江苏常州市江边五期及污水资源化利用工程-深床滤池工程设计采购施工一化(EPC)中标候选人公示,第一中标候选人上海市城市建设设计研究总院(集团)有限公司,投标报价74933440.20元。招标人常州市城市排水有限公司。常州市江边五期及污水资源化利用工程-深床滤池工程设计采购施工一化(EPC)
11月20日,陕西省榆林市生态环境局网站发布一则行政处罚决定书,陕西省水务集团吴堡县污水处理有限公司因生物滤池除臭系统停运被罚10万元。行政处罚决定书(陕西省水务集团吴堡县污水处理有限公司)榆林市生态环境局行政处罚决定书陕K环罚〔2023〕184号当事人名称:陕西省水务集团吴堡县污水处理有限公司
8月1日,福州滨海新城空港污水处理厂PPP项目(反硝化滤池标段)设备采购、安装及调试招标公告发布,项目最高限价为739.18万元。本次招标范围:福州滨海新城空港污水处理厂建设规模为5.0万m3/d,出水水质指标执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准(具体以环评批复要求为准)
大多数污水处理厂的提标重点和难点都在TN达标上。深床滤池是目前污水处理厂提标改造的主流脱氮工艺之一,具有占地面积小、动力消耗低、脱氮效果好等特点,在提标工程中得到了广泛应用。但由于采用的水流方向和滤料材质、滤速、滤料强度不同,脱氮效果也存在差异。实际工程应用中,上向流深床滤池滤料材
不老的砂滤技术你知道吗?世卫组织有份报告说,西方滤池的历史可追溯到1804年,当时一个叫JohnGibb的苏格兰人发明了一个试验性的过滤装置,主要用于他自家的漂白工场,多余的过滤水以每加仑0.5镑的价格卖给当地人。之后的20多年里,不少人都对砂滤池的设计细节进行改进。到了1829年,砂滤池进入市政领
截至2020年底,全国地级及以上城市2914个黑臭水体消除比例达到98.2%。“十四五”期间,生态环境部将继续以水生态保护修复为核心,巩固深化碧水保卫战成果,积极推进美丽河湖保护与建设。2020年10月,中国城镇供水排水协会发布《城镇水务2035年行业发展规划纲要》,其在城镇水环境2035年总体目标中提出
11月25日,国家能源招标网发布了科环集团朗新明南京分公司随州火电2×660MW机组新建水岛EPC项目滤池设备采购公开招标项目招标公告。
污水厂提标改造也能事半功倍是最新的一个,这个话题的出炉说来也有意思。去年讲了一年因地制宜的污水提标改造解决方案,获得了不少好评(所有的批评也都是好意的,因此我都把它归纳到好评范畴内)。
对饮用水安全关注的日益提升,以及水环境污染情况的多样化,导致常规给水处理工艺技术在面对特定污染特征的原水情况下可能“力不从心”,将污水处理技术应用于给水处理工艺,已经成为了在特定情况下的工艺探索方向。
摘要:广东省某水质净化厂一期工程原采用SBR+纤维转盘滤池为主体工艺,要求提标改造后主要出水指标达到《地表水环境质量标准》V类标准(TN≤15mg/L),实际出水TP偶尔超标,TN严重超标。提标改造工程在现有SBR工艺后端新增了上向流反硝化深床滤池模块化水处理装备,出水COD≤30mg/L、BOD5≤6mg/L、TN≤12mg/L、TP≤0.3mg/L和SS≤5mg/L,达到了地表准Ⅳ类标准,表明上向流反硝化深床滤池脱氮除磷效果好,尤其是脱氮效率极高,最大去除量高达29.4mg/L,相应的反硝化负荷达到了2.08kgNO3-N/(m3·d)。
继上期《水厂视界|广西规模最大污水处理厂三期工程上篇》介绍了南宁市江南污水厂的项目概况、设计理念及先进工艺之后,本篇将重点介绍江南污水厂的改良型A/A/O生物池、深床滤池的设计参数与运行工况,双离子除臭法、生物沥浸污泥调理技术的核心装置及其工作原理。
11月21日,温州市生态环境局发布《关于拟对华润苍南1#海上风电二期扩建工程环评文件作出审批意见的公告》。公告显示,华润海上风电(苍南)有限公司将在温州市苍南县东部海域实施华润苍南1#海上风电二期扩建工程。拟利用苍南1#海上风电场空余机位新增安装24台远景8.5MW风机,总装机容量204MW,同时新建
11月16日,全球陆上最大15兆瓦风电机组在吉林省白城市通榆县成功实现满功率运行,再次刷新全球陆上风电机组运行纪录。该风机叶轮直径270米,叶片长度131米,最大扫风面积57256平方米,相当于8个足球场大小,单台机组年发电量可满足16万个家庭全年的用电量。该项目采用的是3S爬梯导向升降机,升降机以塔
11月19日,宁夏中车中卫基地(以下简称:中卫基地)迎来了历史性的一刻——第一千台风机成功下线。这一重要里程碑标志着中车株洲所在宁夏以及三北地区深耕细作取得了显著成果,同时也彰显了中国中车在新能源装备领域的技术创新能力和品牌影响力。中国中车集团党委书记、董事长孙永才,中卫市委副书记、
四季度,各大项目交付建设正“马力全开”。关键之时当行关键之为,运达股份紧盯重点、靶向发力,聚神、聚心、聚力,狠抓责任落实、狠抓工程质量、狠抓安全红线,全力保交付、保并网、保发电。即日起,运达股份推出【全力以“付”】专题报道,与您一起看项目、走现场、进园区、访客户,感受运达股份以“
华能河北清洁能源分公司所辖各风电场2024-2027年风机大部件吊装项目【重新招标】中标候选人公示招标公告显示,项目概况:为确保华能河北清洁能源分公司所属化德、康保、涿鹿风电场,风力发电机组大部件损坏后能够及时恢复运行,减少停机时间和电量损失,需进行风机大部件吊装项目采购,项目主要包含风
近日,由东方风电自主研发的5千瓦垂直轴风力发电机组在海南儋州基地完成吊装调试,成功并网运行。此次安装的垂直轴风力发电机组相较传统风电机组高度降低、结构形式从简;风机转速较低,叶尖速比低,运转中产生的噪声较小;可以应用于城市公共照明、通信基站、海上平台、边防哨所等离网区域;具有全面
一款大风机从概念发布到批量交付分几步?2023年2月远景能源在乌鲁木齐重磅发布ModelT平台全新EN-220/10MW智能风机,专为新疆及三北中高风速区域和沙戈荒场景设计;2023年7月EN-220/10MW样机下线、吊装完成,基于远景独有的分层测试验证体系,样机出厂前已完成了包括传动链、叶片、电气系统、塔基等在内
近日,金风科技成功完成日本北拓四仓(Yotsukura)风电项目的机组吊装工作,预计近期完成并网。这标志着金风科技全球业务已覆盖6大洲42个国家,全球风电装机已增加至38个国家。据日本风力发电协会统计,截止至2022年6月末,日本风电装机已达4.7GW。根据最新版《日本能源基本计划》,2030年日本风电装机
11月15日,由中国可再生能源学会风能专业委员会主办、华润电力控股有限公司承办的“2024风能企业领导人座谈会”在北京召开。座谈会由中国可再生能源学会风能专业委员会秘书长秦海岩主持。华润电力控股有限公司副总裁后永杰表示,希望大家能够借着此次座谈会,分享智慧,碰撞思想,凝聚共识,集思广益,
北极星风力发电网获悉,11月16日,由三一重能自主研制的全球陆上最大15兆瓦风电机组SI-270150成功实现满功率运行,再次刷新全球陆上风电机组运行纪录,为世界陆上风电大型化发展树立新样板。SI-270150是三一重能在12.X~16.X兆瓦海陆平台倾力打造的重磅产品,设计寿命延长至25~30年,风轮直径270米,可
北极星风力发电网获悉,继今年8月西门子歌美飒在台中扩建的机舱工厂投产后,中国台湾首台在当地组装的14MW机组已正式完工。西门子歌美飒(SiemensGamesa)扩大了机舱工厂,为1GW海龙海上风电场生产指定硬件。西门子歌美飒表示,在该工厂组装的风机机舱由1万多个部件组成,其中一些部件来自新进入海上风
近日,由中建三局承建的番禺区中部净水厂二期工程(大龙)项目正式通水运营,日污水处理量达10万吨,服务面积约32平方公里。项目是广州市水务重点项目,《广州市水务发展“十四五”规划》、《番禺区水环境治理三年攻坚行动计划》污水处理工程项目。自2023年4月15日进场施工后,开启“开局即决战、起步即
一年春作首,万事行为先。开年以来,水务集团坚持“干”字当头,树立“项目为王”理念,落细“民生清单”,全面推进为民办实事项目北尖公园净水厂工程、太湖新城污水处理厂三期扩建工程建设,持续增进民生福祉,以实绩实效擦亮绿色发展底色。水务集团盯目标、赶进度,坚持高标准高质量建设,有效破解难
10月18日,《环城北净水厂环境影响报告书》被生态环境部门受理并在广州市生态环境局网站上进行公示。该净水厂选址白云区松洲街道,白云区环城高速以北、卫生河以东、石井河以西地块。项目总投资137874.08万元。环城北净水厂设计处理规模10万吨/日,出水主要指标执行《城镇污水处理厂污染物排放标准》(
随着我国城市用地的日趋紧张及“邻避效应”的不断出现,传统的地上式污水处理厂在占地面积、臭气控制等方面的劣势日益凸显,于是,为了满足生态环境效益,一批具有“土地集约,优化环境,资源回用”优势的地埋式污水处理厂不断涌现,发展势头“如日中天”。今年以来,就有多座地埋式污水处理厂建成投运
近日,上海市政总院承接嘉善蓉溪净水厂工程,该厂是国内罕见的全地下工业污水处理厂与上部大体量体育商业体综合开发建设的项目,在国内地下式污水处理厂建设中具有标杆意义。项目历经项建书及方案招标、可研及初设招标、施工图招标三个阶段,工程建设内容包括新建一座10万m/d的全地下污水处理厂,地面
11月20日,“广州水投集团”官方微信公众号就网传“广州市净水有限公司沥滘净水厂进水核酸检测情况的紧急报告”的相关信息回应称,沥滘净水厂污水进厂入口处检测出阳性,原因是该厂附近有高风险管控区,从环境流行病学看属正常现象。污水经过处理和消毒,最终的尾水全部达标排放,核酸检测皆为阴性。广
近日,上海市政总院承担常州市武进区阳湖生态净水厂工程设计。该厂总处理规模20万m3/d,承担了武进区30-40%的市政污水处理任务,建成后将成为武进区规模最大的污水处理厂。总院自2020年起便安排项目团队进行项目追踪及前期研究,秉承“高效集约、生态低碳、创新智慧、海绵绿色”的十六字方针,对项目进
9月16日,重庆水务集团三峡水务公司肖家河污水处理厂净水节能回收利用示范项目正式开工建设,该项目将污水处理厂的尾水变废为宝进行水力发电,产生源源不断的绿电,为实现“双碳”目标贡献力量。据了解,肖家河污水处理厂日处理污水8万立方米,服务石盘河、果塘、果园、两路回兴工业园、鸳鸯、翠云等区
8月25日上午,浙中首座大型全地埋式污水处理厂——义乌市双江湖净水厂进入通水调试阶段,预计9月正式通水试运行。双江湖净水厂是浙江省重点工程,由水务集团投资建设,处理规模16万吨/日,总投资概算为13.78亿元,位于稠江污水厂南侧。建成投运后,义乌市污水处理能力将提升至75万吨/日,有效缓解义乌
6月21日,仁怀市水务净水有限责任公司2022年度生活污水处理厂药剂采购项目(PAC、PAM、葡萄糖)中标(成交)结果公告发布,项目第一中标候选人为重庆市冠强化工有限公司,投标报价292.1万元。项目主要为23座生活污水处理厂采购运行所需药剂(PAC、PAM、葡萄糖)PAM30吨,PAC380吨,葡萄糖150吨。仁怀市
在鄠邑区政府和西安水务集团的大力支持和配合下,在各参建单位的共同努力下,西安净水公司于5月9日喜获鄠邑区水务局批复,同意鄠邑区第三污水处理厂转入商业运行。西安市鄠邑区第三污水处理厂位于大唐陕西发电有限公司西安热电厂西侧。鄠邑区第三污水处理厂顺利转商业运行,标志着西安净水公司首个特许
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!