登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
1EDI膜块污堵的判断
1设备的化学清洗及再生
虽然EDI膜块的进水条件在很大的程度上减少了膜块内部阻塞的机会,但是着设备运行时间的延展,EDI膜块内部水道还是有可能产生阻塞,这主要是EDI进水中含有较多的溶质,在浓水室中形成盐的沉淀。如果进水中含有大量的钙镁离子(硬度超过0.8ppm)、CO2和较高的PH值,将会加快沉淀的速度。遇到这种情况,我们可以通过化学清洗的方法对EDI膜块进行清洗,使之恢复到原来的技术特性。
2EDI膜块被污染堵塞的判定
1、在进水温度、流量不变的情况下,进水侧与产水侧的压差比原始数据升高45%。
2、在进水温度、流量不变的情况下,浓水进水侧与浓水排水侧的压差比原始数据升高45%。
3、在进水温度、流量及电导率不变的情况下,产水水质(电阻率)明显下降。
4、在进水温度、流量不变的情况下,浓水排水流量下降35%。
3膜块堵塞的几种形式
1、颗粒/胶体污堵
2、无机物污堵
3、有机物污堵
4、微生物污堵
EDI清洗注意:在清洗或消毒之前请先选择合适的化学药剂并熟悉安全操作规程,切不可在组件电源没有切断的状态下进行化学清洗。
●颗粒/胶体污堵
进水颗粒度≥5μm时会造成进水流道堵塞,引起膜块内部水流分布不均匀,从而导致膜块整体性能降低。如果EDI膜块的进水不是直接由RO产水端进入EDI膜块,而是通过RO产水箱经过增压泵供水,建议在进入EDI膜块前端增设保安过滤器(≤0.2μm)。在组装EDI设备时,所有的连接管道系统应冲洗干净以预防管道内的颗粒杂质进入膜块。
●无机物污堵
如果EDI进水含有较多的溶质且超出设计值或者回收率超过设计值时,将导致浓水室和阴极室的结垢,生成盐类物质析出沉淀,通常结垢的类型为钙、镁离子生成的碳酸盐。即便这类物质的浓度很小,接触时间也很短,但随着运行时间的累加,仍有发生结垢的可能,这种硬度结垢很容易通过酸洗去除。按照方案1中的方法,使用低PH溶液在系统内部循环清洗,可以去除浓水室和阴极室的结垢。
当进水中的铁和锰含量高,或者高TDS的水以外进入到EDI膜块时,也会使淡水室的离子交换树脂或者浓水室形成无几物污堵。可以采用方案2进行清洗。
●有机物污堵
当进水有机污染物TOC或TEA含量超过设计标准时,淡水室的离子交换树脂和离子膜会发生有机污堵。可以采用方案3的方法,用高PH值的药水对淡水室及浓水室循环清洗可以将有机分子清除出离子交换树脂对这种污堵进行清洗。
●微生物污堵
当设备运行环境适于微生物生长,或者进水中存在较多的细菌和藻类的时候,EDI膜块和系统也会发生微生物污堵。可以采用方案3、4中的方法用高PH盐水进行清洗。如果微生物污堵情形比较严重时,可以采用方案5进行清洗。如果同时伴有无机物污堵,可以按照方案6加入酸洗步骤。
对于极严重的微生物污堵,可以采用方案7或8以高PH药剂清洗。
2EDI膜块8大清洗方案
1清洗方案1——浓水室结垢清洗
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过浓水管路进入EDI膜块再回到清洗水箱,浓水进、出水阀开启,关闭EDI淡水进水阀和产水阀。
4、在清洗水箱配置2%浓度的盐酸清洗液。
5、启动清洗泵,调节浓水进水阀,以规定的流量循环清洗(酸洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、打开EDI进水阀和产水阀,同时对两个水室进行冲洗。
9、检测浓水出水侧的水质,直至与进水侧电导率相近。
10、各个阀门,恢复原始各设计流量数据。
11、恢复EDI各个管路与其他系统的连接。
12、开启PLC控制柜电源,向EDI膜块送电,转入正常运行,并作好初次运行的数据记录。
2清洗方案2——淡水室结垢清洗
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路分别进入EDI膜块的淡水室和浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐酸清洗液。
5、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(酸洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测淡水、浓水出水侧的水质,直至与进水侧电导率相近。
9、调节各个阀门,恢复原始各设计流量数据。
10、停机,恢复EDI各个管路与其他系统的连接。
11、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
12、转入正常运行,并作好初次运行的数据记录。
3清洗方案3——有机物污堵清洗
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路分别进入EDI膜块的淡水室和浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置1%浓度的氢氧化钠(NaOH)+2%盐(NaCl)的清洗液。
5、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(碱洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
9、调节各个阀门,恢复原始各设计流量数据。
10、停机,恢复EDI各个管路与其他系统的连接。
11、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
12、转入正常运行,并作好初次运行的数据记录。
4清洗方案4——有机物污堵和结垢
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路分别进入EDI膜块的淡水室和浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐酸清洗液。
5、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(酸洗步骤)。参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
9、在清洗水箱配置1%浓度的氢氧化钠(NaOH)+2%盐(NaCl)的清洗液。
10、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(碱洗步骤)。(参见附表)
11、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
12、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
13、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
14、调节各个阀门,恢复原始各设计流量数据。
15、停机,恢复EDI各个管路与其他系统的连接。
16、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
17、转入正常运行,并作好初次运行的数据记录。
微生物污堵可采用方案3进行
微生物污堵和结垢可饿采用方案4进行
5清洗方案5——严重的微生物污堵
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路进入EDI膜块的淡水室、浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
5、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
9、在清洗水箱配置0.04%浓度的过氧乙酸(CH3COOOH)+0.2%的过氧化氢(H2O2)清洗液。
10、启动清洗泵,分别调节淡水、浓水进水阀,以规定的流量循环清洗(消毒步骤)。(参见附表)
11、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
12、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
13、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
14、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
15、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
16、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
17、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
18、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
19、调节各个阀门,恢复原始各设计流量数据。
20、停机,恢复EDI各个管路与其他系统的连接。
21、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
22、转入正常运行,并作好初次运行的数据记录。
6清洗方案6——严重的微生物污堵和结垢
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路进入EDI膜块的淡水室、浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐酸清洗液。
5、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(酸洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测淡水、浓水出水侧的水质,直至与进水侧电导率相近。
9、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
10、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
11、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
12、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
13、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
14、在清洗水箱配置0.04%浓度的过氧乙酸(CH3COOOH)+0.2%的过氧化氢(H2O2)清洗液。
15、启动清洗泵,分别调节淡水、浓水进水阀,以规定的流量循环清洗(消毒步骤)。(参见附表)
16、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
17、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
18、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
19、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
20、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
21、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
22、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
23、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
24、调节各个阀门,恢复原始各设计流量数据。
25、停机,恢复EDI各个管路与其他系统的连接。
26、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
27、转入正常运行,并作好初次运行的数据记录。
7清洗方案7——极严重的微生物污堵
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路进入EDI膜块的淡水室、浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
5、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
9、在清洗水箱配置0.04%浓度的过氧乙酸(CH3COOOH)+0.2%的过氧化氢(H2O2)清洗液。
10、启动清洗泵,分别调节淡水、浓水进水阀,以规定的流量循环清洗(消毒步骤)。(参见附表)
11、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
12、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
13、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
14、在清洗水箱配置1%浓度的氢氧化钠(NaOH)+2%盐(NaCl)的清洗液。
15、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(碱洗步骤)。(参见附表)
16、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
17、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
18、分别检测淡水、浓水出水侧的水质,直至与进水侧电导率相近。
19、调节各个阀门,恢复原始各设计流量数据。
20、停机,恢复EDI各个管路与其他系统的连接。
21、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
22、转入正常运行,并作好初次运行的数据记录。
8清洗放案8——极严重的微生物污堵和结垢
1、记录清洗前所有数据。
2、分离EDI设备与其他设备的连接管路
3、连接清洗装置,使清洗泵通过进水管路进入EDI膜块的淡水室、浓水室,再回到清洗水箱,开启所有的进出水阀门。
4、在清洗水箱配置2%浓度的盐酸清洗液。
5、启动清洗泵,分别调节浓水、进水阀,以规定的流量循环清洗(酸洗步骤)。(参见附表)
6、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
7、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
8、分别检测淡水、浓水出水侧的水质,直至与进水侧电导率相近。
9、在清洗水箱配置2%浓度的盐(NaCl)清洗液。
10、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(盐洗步骤)。(参见附表)
11、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
12、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
13、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
14、在清洗水箱配置0.04%浓度的过氧乙酸(CH3COOOH)+0.2%的过氧化氢(H2O2)清洗液。
15、启动清洗泵,分别调节淡水、浓水进水阀,以规定的流量循环清洗(消毒步骤)。(参见附表)
16、停止清洗泵,排空清洗水箱清洗废液,分离浓水排水阀至地沟。
17、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
18、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
19、在清洗水箱配置1%浓度的氢氧化钠(NaOH)+2%盐(NaCl)的清洗液。
20、启动清洗泵,调节淡水、浓水进水阀,以规定的流量循环清洗(碱洗步骤)。(参见附表)
21、停止清洗泵,排空清洗水箱清洗废液,分离产水、浓水排水阀至地沟。
22、向清洗水箱连续注入清水(RO产水),启动清洗泵连续清洗(冲洗步骤)。
23、分别检测产水、浓水出水侧的水质,直至与进水侧电导率相近。
24、调节各个阀门,恢复原始各设计流量数据。
25、停机,恢复EDI各个管路与其他系统的连接。
26、开启PLC控制柜电源,向EDI膜块送电,进行再生(再生步骤),直至电阻率达到出水要求为止。
27、转入正常运行,并作好初次运行的数据记录。
下面是清洗方案选择表
各清洗方案的主要操作步骤:
各清洗方法时间
单个模块清洗时药液配用量
注:对于膜块数量大于1块时,按表中配液的数量乘以膜块数量。
清洗用化学药品规格:所有化学药品必须使用推荐的等级或高于推荐的等级
安全注意事项
1、在配置清洗药液时,必须穿戴好防护服、防护眼镜和防护手套。
2、需要清洗的设备管路必须是与其他连接设备的连接管路完全隔离的。
3、需要清洗的设备其电源必须是完全切断并有“正在操作,不得送电”的安全警示。
4、整个清洗过程中清洗的工作压力不能超过0.15MPa。
清洗设备组件
1、清洗循环泵(耐腐蚀泵)
2、清洗水箱(PP)
3、耐腐蚀清洗软管(与清洗泵适配)
4、耐腐蚀阀门(UPVC)
5、耐腐蚀压力表
6、过滤器(≤1μm)
工具:pH试纸(广泛);温度计;计时表
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月20日,在德国IntersolarEurope展会现场,正泰新能与全球知名可再生能源开发商Sonnedix正式签署战略合作协议。根据协议,正泰新能将在未来一年内为Sonnedix供应750MWASTRON系列光伏组件,支持Sonnedix在全球范围内的光伏项目建设,共同推动绿色能源产业的持续发展。展会现场,Sonnedix首席执行官Axel
2024年5月14日,研究的数字化为基于数据的创新产品提供了众多机会,但同时也需要标准化的数据管理。在弗劳恩霍夫协会的新试点项目“BatterieDigital_real”中,各个研究所正在为电池研究创建一个研究数据室。弗劳恩霍夫太阳能系统研究所ISE正在与奥克兰大学合作,将电池开发和人工智能结合起来。在弗劳
意大利罗马ZEROEMISSIONMEDITERRANEAN2023当地时间10月10日,为期三天的意大利国际绿色能源博览会(ZeroEmissionMediterranean2023)在罗马会展中心正式拉开帷幕,麦田能源再度携多款光储产品及清洁能源解决方案亮相地中海绿色能源市场。麦田能源展台现场(展位号E08)现场直击作为地中海区域绿色清洁
为拓展公司产品线范围,顺应市场发展需要,2023年5月15日江苏华星东方董事长及副总经理兼总工程师赴日接洽低温催化剂的国际销售、DeDioxin/DeNOx滤袋(HBF)的技术合作、小型焚烧及污泥焚烧的技术合作等相关事宜。May15,2023,toexpandthescopeofthecompanysproductsandmeettheneedsofdevelopingmarket,
据外媒报道,加州Imperial县政府日前批准了一项总装机容量高达2GW电池储能项目的部署计划,该项目将部署锂离子电池储能系统和液流电池储能系统的组合。
近日,美国虚拟电厂供应商SwellEnergy的首席执行官表示,纽约公用事业公司ConEdison早就认识到聚合家庭电池系统与太阳能配套可以提供的价值。
近日,上海市政总院设计的青浦区再生建材利用中心项目通过竣工验收。该项目为2020年上海市重大工程之一,是上海环境保护的重点项目,总院参建团队克服疫情影响,实现当年建设当年投产的目标。项目对建筑垃圾进行处理,制成再生产品后进行资源化利用,有利于青浦区加强建筑垃圾管理、保障环境和城市安全
EDI水处理设备的工作原理:EDI是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离生产H+和OH-,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态
EDI模块的清洗保养方案1、RO系统的清洗(1)准备关闭对应系统的产水手动阀,打开对应系统的产水排放阀,浓水底部放水阀,放尽系统内存水后,关闭这几个阀门门。打开对应系统的清洗进水阀,产水回水阀、浓水回水阀。(2)配制清洗液酸洗和碱洗时分别配制以下清洗液:0.5%盐酸酸洗液:在1600LRO水中缓慢
2020年8月31日-9月2日,2020AQUATECHCHINA上海国际水处理展览会在上海国家会展中心成功举办。作为全球范围内超大规模的水处理展示平台,本届展会展示面积高达22万平米,观众覆盖面积极广,包含:石油、化工、制药、钢铁、冶金等多个领域。今年受到疫情的影响,部分国外的展商与观众无法前来进行参展,但是
近日,由东方日升承担工程设计、施工建造、调试及运营等一揽子工程的澳大利亚西部132MWdcMerredin大型光伏电站顺利并网,该电站是澳大利亚西部最大的光伏电站,也是迄今为止建造速度最快的大型光伏电站之一。Merredin电站位于460公顷的原农牧地区,采用了东方日升高效、可靠的光伏组件,以保障电力的持
北极星氢能网获悉,10月25日,中国能建参与建设的南方电网基于阴离子交换膜电解水制氢的兆瓦级制加氢一体化示范站建设项目开工建设。该项目是落实“四新”能建、推动“四大转型”公司承接的首个氢储能项目。该项目由中国能源建设集团广东省电力设计研究院有限公司牵头与云南火电组成的联合体中标,位于
北极星氢能网获悉,日前,中国能建广东院牵头组成的联合体中标全国首个兆瓦级阴离子交换膜制氢示范项目——南网储能公司基于阴离子交换膜电解水制氢的兆瓦级制加氢一体化示范站建设项目,在氢能业务领域取得又一重要突破。“绿氢”是指通过可再生资源获得的、生产过程没有碳排放的氢,是氢能产业的未来
近日,汉丞科技圆满完成超亿元人民币B轮融资,成功引入国际能源及资源公司福德士河(Fortescue)及高瓴创投(GLVentures)的注资。本轮融资由福德士河(Fortescue)与高瓴创投(GLVentures)共同领投。总部位于澳大利亚的福德士河为国际能源及资源公司,对绿氢及相关产业链有广泛布局。本轮融资前,汉丞
近日,从南开大学获悉,南开大学电子信息与光学工程学院罗景山教授团队联合西班牙巴斯克大学科研团队,在电催化水分解制氢研究中取得重要进展。据了解,该联合团队利用金属载体相互作用构筑了碱性条件高活性析氢催化剂,能够在每平方厘米5安培的大电流密度下稳定运行超过1000小时,满足了阴离子交换膜
北极星氢能网获悉,近日,湖北省人民政府发布《湖北省加快未来产业发展实施方案(2024—2026年)》,其中指出:重点开发阴离子交换膜电解水制氢、固体氧化物电解制氢关键技术,突破石墨烯、高活性轻金属等固态储氢材料。原文如下:省人民政府办公厅关于印发《湖北省加快未来产业发展实施方案(2024—20
日前,天津大学尹燕团队成功研发高性能阴离子膜燃料电池。该电池性能优异、耐久性强,有望为我国氢能源汽车赛道“提速”。相关成果已发表于国际权威期刊《焦耳》。氢燃料电池是“氢经济”的重要组成部分,被认为是实现“碳中和”主要途径之一。高温阴离子交换膜燃料电池是氢燃料电池中的“佼佼者”,具
韩国仁川国立大学与哈佛大学联合研究团队成功开发出一种耐疲劳的电解质膜。研究团队创造了一种由Nafion和全氟聚醚(PFPE)组成的互穿网络电解质膜。Nafion是一种常用的具有质子导电性的塑料电解质,PFPE则形成了一种耐用的橡胶聚合物网络,这种橡胶的加入虽然略微降低了电化学性能,但显著提高了耐疲劳
近日,稳石氢能宣布将在2023年底完成搭建自主研发的阴离子交换膜产线并实现小规模生产。达产后一期产能10万平米(4GW)。据悉,阴离子交换膜不仅可用于AEM电解水制氢装备,还可以应用于阴离子燃料电池等领域。另悉,稳石氢能AEM电解槽产线也将于2023年四季度正式投建。预计到2025年,该产线可实现年产
导言:全氟与多氟烷基物质俗称PFAS,因其具有难去除、更难降解的特点,已成为水行业严峻的挑战。水技术在线(AquatechOnline)通过不断了解新方法与技术,为去除这些对环境和人体有害的化学物质总结出五种处理方法。PFAS是什么?根据美国环境保护局给出的定义,全氟和多氟烷基物质(PFAS)是一种由全氟
12月29日,沈抚示范区氢燃料电池关键材料研发生产基地项目正式投产运营。
电渗析(ED),作为膜分离中发展较早的分离技术,是在电场作用下,以电势差为驱动力,利用离子交换膜对料液进行分离和提纯的一种高效、环保的分离过程。
北极星氢能网获悉,5月29日,国务院印发《2024—2025年节能降碳行动方案》。《方案》提出,有序建设大型水电基地,积极安全有序发展核电,因地制宜发展生物质能,统筹推进氢能发展。到2025年底,全国非化石能源发电量占比达到39%左右。加强氢冶金等低碳冶炼技术示范应用。推进石化化工工艺流程再造。加
华能山东分公司德州电厂液碱(离子膜碱)年度框架采购招标公告(招标编号:HNZB2023-10-2-035-01)项目所在地区:山东省1.招标条件本华能山东分公司德州电厂液碱(离子膜碱)年度框架采购已由项目审批机关批准,项目资金为企业自筹,招标人为华能国际电力股份有限公司德州电厂。本项目已具备招标条件,现
双碳目标及国家氢能中长期发展规划指引下,国内绿氢项目呈现快速增长趋势,给电解水制氢设备带来了巨大商业机会。基于对市场前景的良好预判,多方势力抓紧筹谋布局,技术路线呈多元化发展趋势,其中AEM作为一种新兴制氢技术路线正在兴起。(来源:微信公众号“高工氢电”ID:weixin-gg-fcev作者:辛友
《电去离子膜堆测试方法》GB/T38514-2020于近日发布,2021年2月1日起施行。本标准规定了电去离子膜堆测试的条件、装置、项目、步骤、数据处理和报告。本标准适用于生产纯水、高纯水的膜堆性能的测试。
尽管目前市面上有很多双极膜的应用案例,不过你会发现钾盐的双极膜系统非常少。这里面到底有哪些原因?双极膜有进水要求(详情介绍),所以系统基本应用于一价阳离子对应的盐系统。根据元素周期表,再结合日常应用系统可知,主要就四类:锂、钠、钾、铵根等。其中钠盐最常见,锂盐附加值最高。而针对于
摘要:高盐废水“零排放”是当今很多企业需要面临的非常严峻的环保问题,而离子膜电渗析由于其独特的分离机制能够实现高盐废水中无机盐的分离、浓缩和资源化利用,从而实现水和盐的回收利用。本文综述了离子膜电渗析目前在高盐废水“零排放”盐浓缩工艺中的应用情况;展望了电渗析在高盐高COD废水中的
燃煤电厂脱硫废水属于电厂末端最难处理的废水,废水水质受燃煤品质、石灰石品质、脱硫系统的设计及运行、脱硫工艺补充水等因素影响,波动较大,表现出水质组成复杂、高含盐量、高腐蚀性等特点,成为制约电厂脱硫废水零排放的关键因素。中试实验结果表明,电驱离子膜装置将经过化学反应+管式膜预处理的水浓缩
近日,在内蒙古伊泰煤制油有限责任公司了解到,该公司所采用的煤化工废水零排放结晶分盐工艺中试完成并取得了阶段性成果。据悉,煤化工废水零排放的最后阶段是蒸发结晶,其所产生的结晶盐是按照危废定性的,每年上万吨的危废处置,给企业带来沉重的经济负担,而且还受到当地危废处置中心接收能力的限制
位于山东省淄博的东岳集团如今是亚洲规模最大的氟硅材料生产基地,也是中国氟硅行业龙头企业,多次攻克国外技术垄断。这些成就,离不开一张“膜”的研发。东岳集团董事长、党委书记张建宏,用20多年的时间,把一家乡镇企业打造成了全球知名的氟硅材料产业园区;用8年时间,攻克了被国外垄断30多年的离子膜生产技术,让中国在膜技术这一领域走在了世界的前列。对离子膜研发"痴迷"的张建宏,找到了搞离子膜研究的上海交通大学,双方携手攻关。一次次触礁失败,但东岳却始终坚持不懈。经过八年攻关,中国第一张全氟离子膜终于成功下线。攻克离子膜后
江苏省物价局发布《省物价局关于归并部分电价执行类别的通知》,2014年1月1日起,离子膜法氯碱生产用电电度电价每千瓦时提高0.9分钱,2015年1月1日起每千瓦时再提高0.9分钱。遇有国家统一电价调整时,按国家相应政策执行。业内人士指出,这无疑会增加氯碱企业的成本,但是由于大型企业一般会有自备电厂,估计影响有限。专家表示,此举说明政府推动行业整合的意愿,同时也有利于环境保护。他表示离子膜法氯碱生产用电电度电价每千瓦时提高0.9分钱,这个提价幅度还是比较大的,尤其对于氯碱这样的高耗能企业,会大幅增加氯碱企业的成本,在氯碱行业本就不景气的情况下,企业的利润
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!