登录注册
请使用微信扫一扫
关注公众号完成登录
1 声强测量基本原理
声强是指在单位时间内通过垂直声波传播方向上的单位面积的声能,是描述声能流动的具体大小和方向的声学量。可以简单地认为:某点的声强=该点的声压×质点的速度,在声场中,A点的声强定义为:Ir=PAUr (1))式中Ir--A点在r方向上的声强,PA--A点的声压,Ur--A点在r方向上的空气质点振动速度。
常用声强测量法是双传声器法。双传声器法的基本原理如下:设声场中A点附近在r方向上有相距为∆r的两点A1、A2,此两点的声压设为PA、PB; 对无粘性的理论介质,A点的欧拉方程为:(2)式中ρ--空气密度,用A1、A2两点声压的的差分,近似式(1)中A点的声压梯度,得到 Ur=-(3)两传声器之间中点A的声压可用A1、A2两点声压的平均值来近似:P=(4)将式(3)和式(4)代入式(!)中进行矢量相乘就得到A点的声强。
2 声强测量方法
声强测量方法有离散点法和扫描法。离散点法是将测量面均匀划分为若干单元,然后逐个测量每个单元中心点的声强,计算该单元的声功率,最后将所有单元的声功率进行平均,计算该单元的声功率。扫描法是将声强探头在适当长的时间内,在正交两个方向上(水平和垂直),以规定路线(S)型,在测量面元上进行匀速往复扫描。扫描持续时间对声强作时间平均,这样便可得到该测量面的平均声强。扫描法的关键点在于;准确的扫描路线和扫描线密度,探头轴线保持与测量面垂直,探头均匀移动,国标规定单个面元任何一次扫描的持续时间应不小于20s,手动扫描速度在0.1~0.5m/s,机械扫描速度应在0~1m/s。
3 声强测量关键程序
3.1 声源包络面的划分
包络面一般以声源的几何形状、材料类型、连接点和内部结构为划分原则。理论上可以选择任何包络被测声源的表面作为测量包络面,然后对包络面进行合理的划分,可以均匀地将包络面划分为若干面元,也可以根据实际形状和声源指向性,非均匀地划分为若干面元,但要保证每个测量面至少分为4个面元。测量面距声源的距离可根据经验和空间大小来选择,如有温度梯度,至少距离20mm,如有气流,流速应低于4m/s,如测量面形如一展开的板或壳形振动面,距离至少200mm。
3.2 误差分析和现场检验
声强测量误差有很多(比如:近场误差、相位不匹配误差、气流干扰误差、声强探头及操作人员对声场干扰误差、背景噪声误差等),但主要误差还是背景噪声引起的误差,而背景噪声产生的测量误差主要是由于:双传声器声强测量系统制造上的误差,会产生一定的相位失配,并随着背景噪声的增加而增加。在实际操作中,常采用交换两个通道分别进行测量,而后对两次测量结果进行平均来消除背景噪声引起的误差。
声强分析系统在每次测量前应检验仪器设备工作是否正常,这就需要现场检验。声强级检验:是将声强探头放在测量面上声强较高的地方,测量规定的所有频带的法向声强级I+,保持声学中心不变,将声强探头旋转180°,即探头倒向,再测得I-,要求所有频带范围内∣I++I-∣<1.5dB。
3.3 隔离柱长度选择
使用双传声器声强法测量时,两只声强传声器之间相互间隔一定距离(称为声学距离Δr),其间距是用一段和传声器直径相同的圆柱体隔离柱来保证的。隔离柱使被测的声音只能通过传声器保护罩周边的窄槽对膜片起作用,这样就使得两传声器声学中心的距离得到精确的保证。这个声学距离Δr是影响测量精度的重要参数。Δr过大会增大有限差分,过小会增大相位失配误差,只有当Δr远远小于测点与声源间的距离时,声强测量中存在的近场误差才可以忽略不计。隔离柱的长度有多种选择,常用6mm、12mm、25mm、50mm等,分别适合于不同频率的声信号测量,高频声音信号可以使用较短的隔离柱,低频信号使用较长的隔离柱,一般情况下可以使用12mm、25mm的隔离柱,兼顾高低频。
4 变流器的噪声测试
以一机车牵引变流器的噪声测试为例来说明声强测量的应用。首先根据牵引变流器几何形状,其包络面应为长方体X*Y*Z,测量面距离声源500mm,划分为上、左、右、前、后共5个方位,再根据变流器的内部结构,将left、right方位各细分成3个测量面,top方位细分成5个测量面,这样就形成了12个测量面(back面不予考虑),将各测量面均匀的分割成若干面元,X向10等份,Y向4等份,Z向4等份,这样就形成了128个面元,分布图如下:
根据牵引变流器噪声频率的分布,依照∆r不能超过一个最短波长的1/5的规则,我们选取间距为12mm的隔离柱,并选取直径Ф12.7mm1/2"的一组传声器组成声强探头,其有效频率范围为50Hz-6.3kHz。变流器在风扇高/低速运转、冷却系统泵启动、辅助变流器运行的情况下的1/3倍频程频谱(图三):
从测量得到的频谱分布图上(上图为风机高速旋转,下图为风机低速旋转),我们可以看到两图都有亮区和暗区,但在亮区和暗区分布上有明显的区别,其中右上图中最亮处是变流器的冷却风机区域,上面是进风口,下面是出风口,噪声从这里直接向外辐射,造成此处的声功值高,是主要噪声源;电机风扇噪声功率辐射值最高,在630Hz时处出现明显峰值;辅助变流器的电抗器的噪声在2kHz形成高点,而风机噪声成次要噪声源。在这两个图中我们能准确地看出变流器各个组件的噪声状况。从而为寻找噪声源以降低噪声提供非常好的一个依据。
5结束语
通过声强的分析,不仅能够获得噪声辐射场的分布,识别出复杂噪声源中的主要噪声源,还可以通过声强分析中得到的声功谱,进一步分析主要噪声源。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,7月1日,安阳市龙安区美景能源50MW/200MWh独立共享储能电站EPC总承包项目中标候选人公示。第一中标候选人为中建三局集团有限公司、中国联合工程有限公司联合体,投标总价24482.25804万元,折合单价1.224元/Wh;第二中标候选人为陕西大道建筑工程有限公司、浙江博华电力设计院有限公
北极星储能网获悉,7月1日,大埔峡能200MW/400MWh独立储能电站示范项目EPC总承包中标候选人公示。第一中标候选人为中国电建集团青海工程有限公司,投标报价33994.8093万元,折合单价0.85元/Wh;第二中标候选人为珠海电力建设工程有限公司,投标报价33920万元,折合单价0.848元/Wh。项目招标人为国家电
6月30日,广西广投桂中新能源有限公司发布了广西广投桂中综合新型储能示范项目储能系统设备采购招标公告,总招标规模107MW/200.28MWh。本项目分为2个标段。其中:I标段:磷酸铁锂电池储能系统(50MW/100MWh)+飞轮储能系统(8MW/0.28MWh)+全矾液流电池储能系统(1MW/4MWh)+钠离子电池储能系统(3MW/6
在局势风云变幻、能源安全与碳中和目标日益紧迫的背景下,可再生能源的转型与发展始终是全球瞩目的焦点。日本,作为面临显著能源短缺挑战的工业强国,正积极寻求提升可再生能源技术与完善产业链的解决方案。如何快速构建高效的再生能源产业链?深化与在新能源技术领域占据全球领先地位的中国合作,成为
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
北极星储能网获悉,7月1日消息,新疆吉木萨尔北庭100万千瓦#x2B;20万千瓦/100万千瓦时全钒液流储能一体化项目主体工程顺利完工,进入收尾阶段。据悉,吉木萨尔北庭100万千瓦光伏#x2B;20万千瓦/100万千瓦时全钒液流储能一体化项目,总投资达38亿元。项目运行后,年平均发电量约17.2亿千瓦时。全钒液流储
北极星储能网获悉,6月30日,四方股份披露投资者关系活动记录表,回答公司业务布局情况。构网型技术方面:公司基于对电网互动的深刻理解,充分利用构网型技术在弱系统频率电压主动支撑、交流保护适应性、宽频阻抗特性及振荡主动抑制等方面的技术优势,提出了在不同典型应用场景下的构网型SVG和构网型储
在储能系统的高效运行过程中,设备间的信息传递是核心支撑。从电池状态的实时监测到系统充放电的精准控制,通信技术的选择直接影响储能系统的安全性、稳定性与智能化水平。本文将系统梳理储能领域常见的通讯方式,解析其技术特点与典型应用场景。RS485通信:低成本多节点的近距离连接RS485通信基于差分
北极星储能网获悉,6月28日,广东储云能源科技有限公司2025-2026年新型储能系统及配套设备框架采购中标候选人公示,项目采购总容量360MWh。第一中标候选人为南方电网电力科技股份有限公司,投标报价28671.4万元,折合单价0.796元/Wh;第二中标候选人为厦门科华数能科技有限公司,投标报价30530.999997
6月28日,由中车山东风电公司自主研发、专为西北地区打造的首台套大功率风力发电机组在中车白银新能源装备产业园成功下线并实现量产,标志着中车在白银的新能源产业布局取得重要突破,也为白银市乃至甘肃省新能源产业发展注入强劲动能。白银市市委副书记、市长张延保,中车山东风电公司党委书记、董事
北极星储能网讯:当SNEC2025的聚光灯聚焦于能源变革前沿,储能产业正以“协同”为笔,在全球能源转型中勾勒新发展图景。展会期间,海博思创、宁德时代、中车株洲所等近百家企业就储能业务密集签署战略合作协议,总规模预计超26.2GWh,从技术研发到系统集成,从产业链协同到全球化市场布局,一场产业聚
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!