登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:介绍了生物质气化与燃煤机组耦合发电技术,并以1台8t/h生物质气化炉与350MW燃煤热电联产机组耦合为例,分析了其耦合的经济性。生物质燃气输入到燃煤锅炉的热量按3种不同方法进行经济性测算,其经济性差异较大,其中生物质燃气送入350MW燃煤机组中的热量按同时生产电能和热能计量,且按燃煤热电联产机组年平均发电标煤耗数值折算发电量,耦合发电量大,发电收益好,耦合优势明显。
目前我国正在大力发展可再生能源,国家发改委可再生能源发展“十三五”规划中提出的指标是:到2020年,全部可再生能源发电装机6.8×108kW,发电量1.9×1012kW·h,占全部发电量的27%。其中生物质资源是可再生能源的重要组成部分,利用生物质发电可以实现CO2的零排放,同时可减少田间地头散烧所带来的环境和空气质量问题。
国家在鼓励生物质直燃发电的同时,也大力支持燃煤机组与生物质耦合发电的新型生产模法。充分利用我国现有清洁高效煤电机组技术优势,依托现役煤电高效发电系统和污染物集中治理设施,实现生物质的高效清洁利用。为此国家能源局和环保部于2017年11月联合下发了国能发电力(2017)75号文《关于开展燃煤耦合生物质发电技改试点工作的通知》。下面结合8t/h生物质消耗量的气化炉与350MW燃煤热电联产机组耦合的案例,分析其耦合后的经济性。
1生物质气化与燃煤机组耦合发电技术
生物质气化与大型燃煤机组耦合发电技术是指生物质在循环流化床气化炉中完成高效气化,产生的生物质燃气经过除尘后,以热燃气的方法直接送入大型燃煤电站锅炉,与煤粉进行混烧,利用燃煤机组现有的发电系统实现高效发电。该技术充分利用大型燃煤机组,将生物质能高效转化为电能,实现生物质的高效利用。
生物质气化技术目前在工业应用中采用较多的是微负压循环流化床气化技术。生物质在床料的辅助流化作用下,在炉内经历聚集、沉降、吹散、上升再聚集的物理衍变过程;循环床中气体、生物质、床料发生剧烈的传热传质和接触反应,形成炉内循环。
同时气体对生物质和床料的微小颗粒实现快速夹带,经过旋风分离器分离出残留可燃组分和床料,由回料装置送回反应区,形成炉外的物料循环。气化炉内外两种循环平衡的建立,保证反应进程稳定,是循环流化床气化技术的核心。
生物质气化与燃煤机组耦合发电的原则性系统图见图1。生物质燃气输送到锅炉的热量通过生物质燃气低位发热量和生物质燃气流量数值进行监测。
2生物质气化与燃煤热电联产机组耦合案例
2.1热电联产机组燃煤参数
2.1.1锅炉
锅炉为2台亚临界参数,一次中间再热,单炉膛,平衡通风,自然循环汽包锅炉。三分仓容克法空气预热器。锅炉采用全钢构架,悬吊结构,锅炉运转层以上紧身封闭。单台锅炉的参数为:最大连续蒸发量1165t/h;过热蒸汽出口压力17.5MPa;过热蒸汽出口温度540℃;再热蒸汽流量969.3t/h;再热蒸汽进口压力3.86MPa;再热蒸汽进口温度328.4℃;再热蒸汽出口压力3.68MPa;再热蒸汽出口温度540℃;省煤器入口给水压力(包括静压头)19.265MPa;省煤器入口给水温度279.4℃;空气预热器型法三分仓回转法空气预热器。
2.1.2汽轮机
汽轮机为2台额定功率为350MW的亚临界参数、一次中间再热、单轴双排汽、抽汽凝汽法采暖供热机组。单台汽轮机的参数为:额定纯凝工况主蒸汽流量1106.03t/h;纯凝工况额定功率350MW时最大出力382.455MW;平均热负荷工况出力276.545MW;主汽门进口蒸汽压力16.67MPa;主汽门进口蒸汽温度537℃;再热蒸汽流量919.75t/h;再热蒸汽进口蒸汽温度537℃;再热蒸汽进口蒸汽压力3.769MPa;平均工况采暖抽汽压力0.49MPa;平均工况采暖抽汽温度267.6℃;最大负荷工况采暖抽汽流量:500t/h;额定冷却水温度20℃;额定背压4.9kPa;额定转速3000r/min。
2.2生物质气化炉
生物质气化炉为1台生物质消耗量为8t/h玉米秸秆气化炉,为微负压循环流化床型式。日运行时间按22h计算,日燃秸秆量176t;生物质气化炉年运行时间与350MW燃煤机组年运行时间一致,按7300h计算,年秸秆耗量58400t。
2.3生物质气化炉输送至燃煤锅炉的热量
生物质气化炉的输入燃料为玉米秸秆,产生生物质燃气,生物质燃气直接进入燃煤机组锅炉中燃烧。生物质燃气送入燃煤锅炉的热量包括两部分,一是生物质燃气的显热,生物质气化炉出口燃气温度一般为750℃左右,具有很高的物理显热;二是生物质燃气燃烧所放出的化学热,即燃气的低位发热量。单台8t/h生物质气化炉热量:燃气产量17000m3/h;生物质燃气显热9.87×106kJ/h;生物质燃气燃烧放热量6.59×107kJ/h;生物质燃气输入燃煤锅炉总热量7.577×107kJ/h。生物质气化炉年运行时间按7300h计算,生物质燃气年产量1241×105m3,全年输入燃煤锅炉总热量553121GJ。
2.4运行方法
1台8t/h生物质消耗量的气化炉布置于热电厂厂区内,尽量靠近2台350MW机组锅炉房附近,以便于生物质燃气的输送。
350MW燃煤机组锅炉配置专用的生物质燃气燃烧器。原则上生物质气化炉产生的燃气只与1台350MW燃煤锅炉耦合运行,当耦合运行的350MW燃煤机组锅炉故障时可以切换到另外1台350MW机组锅炉运行。由于8t/h生物质消耗量的气化炉单位时间内输入350MW燃煤锅炉的热量约为燃煤锅炉额定负荷下热量输入的2.5%左右,生物燃气热量所占比例很小,因此只要燃煤机组运行,则8t/h生物质气化炉均处于满负荷运行状态,且忽略掺烧生物质燃气对燃煤锅炉运行的影响,即燃煤锅炉效率保持不变。
3经济性分析
3.1经济性分析的基本原则和边界条件
1台8t/h气化炉,生物质气化与燃煤热电联产机组耦合后,其经济性指标分析计算按如下原则及边界条件进行。
a.耦合后350MW燃煤机组的锅炉效率、汽机效率不变。
b.生物质与350MW燃煤热电联产机组耦合后的机组年发电量(设备利用时间)不变,供热量不变。每台350MW热电联产机组的年供热量404×104GJ,年发电量147500×104kW·h,厂综合用电率7.6%,年平均发电标煤耗248g/(kW·h),年平均供热标煤耗42.5kg/GJ。
c.生物质价格按300元/t;生物质燃气发电上网电价按0.75元/(kW·h);采暖供热价格按27.5元/GJ。
d.标煤价格按550元/t,当地燃煤机组含税上网电价按0.375元/(kW·h)。
e.生物质气化炉的年运行时间按7300h(自然年时间扣除350MW机组大小修和机组非停时间)。
f.年节省标煤的燃料费1038×104元,生物质燃料年费用1752×104元,生物质燃气年替代标煤量18873t。
3.2 3种经济性指标测算方法
3.2.1方法1
以生物质燃气送入350MW燃煤机组中的热量仅按生产电能计量,且按350MW机组纯凝工况下发电标煤耗计算年发电量(同时考虑机组年负荷分配后对煤耗的影响)。经济性指标见表1。
3.2.2方法2
以生物质燃气送入350MW燃煤机组中的热量仅按生产电能计量,且按燃煤热电联产机组年平均发电标煤耗计算年发电量,经济性指标见表2。
3.2.3方法3
方法3以生物质燃气送入350MW燃煤机组中的热量按同时生产电能和热能计量,且按机组年平均热电比分配生物质燃气热量,耦合后经济性指标见表3。
3.3 3种经济性指标测算方法比较
上述3种生物质耦合燃煤热电联产机组的经济性测算方法中,按方法2测算的经济性最好,生物质燃气输入燃煤锅炉的热量按热电联产年均发电标煤耗率折算发电量,其折算的发电量最多,获得的收益最大。按方法1测算的经济性居中,按方法3测算的经济性最差。方法3的分摊方法是将生物质燃气热量按年均热电比进行分摊,一部分热量用于发电,一部分热量用于供热,用于发电的可以获得0.75元/(kW·h)的上网电价,而用于供热的无额外收益,因为供热量不变,供热价格也没提高。当生物质燃气发电的上网电价下降时,生物质气化与燃煤热电联产机组耦合的经济性会随之降低,燃气上网电价波动时收益测算结果见表4。其中标煤价格按550元/t不变,生物质单价按300元/t不变,生物质燃气发电上网电价由0.75元/(kW·h)按0.05元/(kW·h)递减下降到0.55元/(kW·h)。
由表4可以看出,当生物质燃气上网电价下降至0.55元/(kW·h)时,即便按方法2进行测算,其每年的收益仅为517×104元。如果耦合1台8t/h生物质气化炉的总投资按6×107元计算,其回收年限在10年以上,经济性不佳。
4结论
燃煤热电联产机组既生产电能又生产热能,上述3种测算方法中生物质燃气输入到燃煤锅炉的热量都是相同的,只是由于这部分热量产生的产品不同和产品产量的计量方法不同,而导致测算的经济效益有所不同。方法1是生物质燃气输入给燃煤热电联产机组热量仅按生产电能计量,且按燃煤热电联产机组纯凝工况额定负荷时的发电煤耗率折算发电量(同时考虑机组年负荷分配对煤耗的影响)。此时生物质耦合发电量没有得到燃煤机组热电联产所带来的好处,生物质气化耦合发电量相对方法2较少,发电收益小。
方法2是生物质燃气输入给燃煤热电联产机组热量仅按生产电能计量,且按燃煤热电联产机组年平均发电标煤耗数值折算发电量。生物质耦合发电量享受了燃煤机组热电联产好处归电的益处,机组年平均发电煤耗率仅为248g/(kW·h),远低于660MW等级和1000MW等级的高效超超临界纯凝发电机组的年均发电标煤耗数值。按此方法测算的生物质气化耦合发电量大,发电收益好,耦合优势明显。
方法3是生物质燃气输入给燃煤热电联产机组热量按同时生产电能和热能计量,且按燃煤机组热电联产的全年平均热电比例分配热量并测算耦合的经济性,生物质燃气用于发电的那部分热量按燃煤热电联产机组年平均发电标煤耗数值折算发电量。由于有部分生物质燃气热量分摊用于供热,因此分摊的发电量明显少于方法2,且按方法3进行测算的生物质耦合发电的经济性最差。
按上述3种方法测算的经济性会随着边界条件的变化而变化,如生物质燃料的单价、标煤单价、生物质耦合发电的上网电价、热电联产的热电比等均有较大关系。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
湖北华电襄阳发电有限公司生物质气化耦合发电#5机组项目EPC总承包项目招标公告(招标编号:CHDTDZ001/17-ZB-012)一、招标条件湖北华电襄阳发电有限公司生物质气化耦合发电#5机组项目EPC总承包项目已批准,招标人为湖北华电襄阳发电有限公司,项目资金为自筹。本项目已具备招标条件,现进行公开招标。
北极星氢能网获悉,6月11日,浙江省发改委发布关于拟对浙江海畅气体股份有限公司新建年产83.91万吨氧、氮、氩及绿色甲醇、氢、二氧化碳、一氧化碳气体项目节能报告作出审批意见的公示。该项目总投资9.8亿元,新建空分系统、生物质气化系统及配套的冷却系统和废水处理系统等生产及辅助设备,达产后形成
北极星氢能网获悉,4月5日,江西吉安遂川县举行超临界水生物质气化生产蒸汽和富氢可燃气项目签约仪式。中国科学院院士,西安交通大学教授、博导郭烈锦,新锦盛源(广东)能源科技有限公司董事长、总经理李钰,县委书记胡承国,县委副书记、县长罗刚,县领导邹宾艳、胡文峰、张剑锋出席签约仪式。据了解
北极星氢能网获悉,2024年2月2日,合肥德博生物能源科技有限公司在江西省瑞昌市政府正式签约,启动全球首台套15万吨级生物质气化制备绿色甲醇项目。项目核心装备由合肥德博自主研发,投产后,可年消纳农林废弃物40余万吨,产出绿色甲醇产品和绿色二氧化硅,预计年综合产值10亿元。中国工程院院士蒋剑春
9月8日,陕西氢能党委书记、董事长黄晔会见陕西环保产业集团党委书记、董事长郝军亮一行,双方就氢能全产业链与环保产业耦合协同等方面进行座谈交流。黄晔对郝军亮一行表示欢迎,他说,陕西环保产业集团作为区域环保产业发展的推动者,在区域环境治理中发挥了示范带头作用。陕西氢能公司愿与陕西环保产
尽管氢是一种清洁能源载体(燃料),但它的生产大大增加了全球碳足迹。此外,环保的氢气生产成本很高。但有一个更好的解决方案:生物质气化。什么是生物质气化?生物质是任何可再生的有机材料,如农业作物残留物、有机城市固体垃圾、林业废物和动物废物。将这些资源在高温下转化为燃料和气体就是气化。生
安徽德博永锋生物质气化供10t/h锅炉联产炭项目于2018年9月开工建设,2018年12月正式投入生产运营。
北极星垃圾发电网获悉,山东省首个生物质气化燃气清洁供热示范项目——济宁市泗水县高峪镇生物质清洁供热项目建成投运。
1月26日从西塞山电厂获悉,为消纳农林废弃残余物,破解秸秆田间直焚等社会治理难题,促进电力行业绿色发电,“十四五”期间,西塞山电厂规划建设燃煤耦合生物质气化发电项目,利用稻壳、秸杆、树枝桠等农林剩余物,降低燃煤消耗。西塞山电厂大力发展太阳能光伏发电项目,2020年,该电厂投资近5亿元,建
宁波热电公布,2020年11月23日,公司召开第七届董事会第九次会议,审议通过了《关于对外投资建设玉山县生物质气化热电联产项目的议案》,同意公司与甬饶商企业、玉山工投共同出资7600万元设立宁能玉山生物质发电有限公司(暂命名,具体以工商核准为准),负责投资建设玉山县生物质气化热电联产项目(“玉
近日,华西能源全资子公司华西能源工程有限公司分别与绿洁新能源科技榆树有限公司和绿洁泰能(兴安盟)新能源热电有限公司签订了《榆树市秀水镇生物质热电联产项目新建工程EPC总承包合同》和《兴安盟经济技术开发区生物质气化热电联产项目新建工程EPC总承包合同》,合同金额达7.2亿元。项目的签订将解
针对生物质能资源客观存在的不利现状及生物质能直燃发电技术面临的技术难题,生物质能直燃发电行业技术探索可主要从燃料加工技术优化、燃烧发电技术优化、智能控制水平提升等方向着手,最大程度规避资源能量密度低、有害元素含量多等特点,提升技术水平。优化燃料加工技术生物质能热电联产的规模化、高
近日,国家林草局发布《林草产业发展规划(2021—2025年)》,其中提出到2025年,农林生物质直燃发电(含热电联产)新增装机500万千瓦,生物质成型燃料利用量达3000万吨。详情如下:国家林业和草原局关于印发《林草产业发展规划(2021—2025年)》的通知林规发〔2022〕14号各省、自治区、直辖市、新疆
文章依托某350MW热电联产机组,对生物质散料送粉管道耦合和成型颗粒送粉管道耦合两种方案进行了系统设计和技术经济性分析:按照10%的掺烧比例,送粉管道耦合方案对主辅机影响很小,对污染物排放无不利影响
8月26日上午1×15兆瓦生物质热电联产项目发电机组首次并网发电一次成功正式并入国家电网这标志着该项目由建设阶段全面转入生产运营阶段。1×15兆瓦生物质热电联产项目是高平市的重点转型项目。项目位于经济技术开发区马村工业园内,占地90.86亩,总投资1.8亿元。项目采用国内先进的生物质直燃发电工艺
日前,山东发改委下发《关于2020年农林生物质直燃发电项目电价精准补贴有关事项的通知》,根据通知,只要满足2019年农业废弃物收购量不低于3万吨(含)且2020年配合当地政府治理秸秆露天焚烧,积极收购农业废弃物即可申请。据悉,2019年山东省内30家生物质发电企业分别获得了450万元—1100万元的发电和
日前,山东发改委下发《关于2020年农林生物质直燃发电项目电价精准补贴有关事项的通知》,根据通知,只要满足2019年农业废弃物收购量不低于3万吨(含)且2020年配合当地政府治理秸秆露天焚烧,积极收购农业废弃物即可申请。据悉,2019年山东省内30家生物质发电企业分别获得了450万元—1100万元的发电和
6月24日消息,新三板创新层公司丰源股份精选层申报材料获全国股转公司受理。丰源股份2018年、2019年业绩符合精选层财务标准一。2019年,公司实现营业收入2.86亿元,归母利润为4321万元,加权平均净资产收益率为14.56%。丰源股份保荐机构为中泰证券,中泰证券在去年A股IPO承销保荐市场中,市占率排名第
摘要:本文介绍了生物质锅炉的发展现状,包括生物质锅炉常见的燃烧方式及特点、各种燃烧技术的国内外应用现状以及生物质锅炉存在的问题。对生物质锅炉的应用特别是在农业中的应用做了介绍。关键词:生物质锅炉;燃烧方式;发展现状引言随着一次能源储量日益枯竭以及矿物能源的无节制利用引发的环境污染
生物质能是自然界中有生命的植物提供的能量,以沼气、生物制氢、生物柴油和燃料乙醇等形式形成。在全球可再生能源端市场市场占比达到73%,利用规模分别达到3000万吨和600万吨,以下是生物质能源行业发展前景分析。生物质能是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。生物
北极星固废网获悉,2019年12月31日,山东发改委下发《关于下达2019年农林生物质直燃发电项目电价精准补贴的通知》,根据通知山东省内30家生物质发电企业分别获得了450元万元—1100万元的发电和农业废弃物使用补贴。具体补贴标准:1、基本电费补贴标准:每家企业补贴360万元(含税下同)。2、电量电费补
湖北华电襄阳发电有限公司生物质气化耦合发电#5机组项目EPC总承包项目招标公告(招标编号:CHDTDZ001/17-ZB-012)一、招标条件湖北华电襄阳发电有限公司生物质气化耦合发电#5机组项目EPC总承包项目已批准,招标人为湖北华电襄阳发电有限公司,项目资金为自筹。本项目已具备招标条件,现进行公开招标。
2023年3月31日,南阳天益发电有限责任公司(以下简称“天益公司”)600MW机组耦合生物质发电项目一次试运成功!该项目是豫能控股“四个解耦”重点示范工程,也是天益公司煤电绿色转型升级标杆项目。项目采用国内首创的生物质直接炉内掺烧专利技术,实现锅炉大比例掺烧农林生物质,农林生物质处理能力10
老挝当地时间2月23日,公司设计及设备成套供货的老挝南潘660MW生物质耦合超临界发电项目奠基仪式在老挝川圹省南潘县举行。公司作为项目主要供货商之一,公司董事长黎仁超及华西工程公司代表等受邀参加。在老挝总理宋赛西潘敦的见证下,能源矿业部、工业商务部、计划投资部,老挝总理助理及川圹省等政府
近年来,火力发电厂受煤价高企等不利因素影响,经营效益下滑,亏损日益严重,传统火电企业怎么办,绿色低碳发展怎么干成为每一个火电人都应该思考的问题,就这个问题,我来谈谈自己看法。解放思想,重在突破创新。发电部作为发电厂生产运行的一线部门,直接与设备、系统打交道,固有的、成熟的、模式化
9月15日,华能集团山东分公司日照电厂4号机组生物质直燃耦合发电项目开工建设。
在“3060”双碳目标的宏大愿景下,“构建以新能源为主体的新型电力系统”这一具体的电力转型方向进一步明确,以风电和太阳能发电为代表的新能源将逐步成为我国的主体电源。但由于风电和太阳能发电是间歇性的不稳定电源,其电量保证需要有具有调节能力的火电给予支持和保障,这一新形势对于现有煤电形成了前所未有的巨大挑战,这意味着碳排放最高的煤电,不但要转型发展成为低碳电源,而且必须从电量保证型的主体电源转变为调节型电源。
摘要:针对某电厂300MW掺烧生活污泥的1号锅炉开展了锅炉燃烧特性理论研究、现场掺烧试验,评估了不同掺烧比例对锅炉燃烧特性、污染物排放的影响。结果表明:掺烧40%含水率的生活污泥,掺烧比例在10%以下时,理论燃烧温度降低了7K,污泥掺烧对于煤的元素成分影响不大,对飞灰浓度影响不大,不会造成省煤器等受热面的磨损加剧,烟囱出口处NOx、SO2和粉尘排放浓度都能满足超低排放要求,脱硫石膏、脱硫废水、脱硫浆液、飞灰和炉渣中重金属排放浓度满足相关环保标准的排放要求。
煤电转型正在扩展新路径。“‘煤电+’固废耦合发电可节约垃圾焚烧电厂建设费用,实现超低排放,缓解固废处置压力,实现固废由低效处置走向高值化利用,助力‘无废城市’建设。”中国华能集团董事长舒印彪近日公开表示。
摘要:国务院“十三五”提出控制温室气体排放目标后,如何较大幅度地降低CO2排放成为燃煤电厂面临的巨大挑战之一。按照现有的煤电技术,仅通过提高煤电效率降低煤耗和CO2排放强度是非常困难的。燃煤电厂采用生物质与煤电耦合发电技术,是当前最可行的降低碳排放的措施。文章针对生物质替代煤炭发电应用
生物质能源有多种技术路线。根据我国的实际情况,我们认为无论电、热、液体燃料、气体燃料、固体商品燃料,都有其存在和发展的价值,都有各自的发展空间,都应该根据其特点和发展空间予以适当鼓励。就因为如此,国家在近几个五年计划中,都列入了生物能源发展规划,其中特别针对不同技术路线生物能源规
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!