登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
放射性废水主要来源于核工业退役的核设施、核武器生产和实验以及其他使用放射性物质的部门。为确保安全排放,必须达到严格的排放标准。处理放射性废水有多种方法,包括化学沉淀法、沉降法、离子交换法、热蒸发、生物学方法和膜分离等[1-5]。
从核燃料循环的前段(如采矿阶段),到后段放射性废物的安全处置,膜分离都显示出巨大的应用潜力[6]。膜分离技术是依据物质分子尺度的大小,借助膜的选择渗透作用,在外界能量或化学位差的推动作用下对混合物中双组分或多组分溶质和溶剂进行分离的方法。目前,国内外用到的膜技术主要有微滤(MF)、超滤(UF)、纳滤(NF)、膜蒸馏(MD)、反渗透(RO)、支撑液膜(SLM)等。本文主要介绍了这几种膜分离方法在放射性废水处理中的应用。
1、膜技术处理放射性废水进展
1.1 微滤法
微滤又称为“微孔过滤”,是以静压差为推动力,利用膜的“筛分”作用进行物系分离的膜过程。微滤膜具有整齐、均匀的多孔结构,在静压差的作用下,小于膜孔的粒子通过膜,大于膜孔的粒子则被截留在膜的表面上,从而实现分离。
加拿大乔可河实验室采用三级“化学预处理—微滤”工艺从地下水中去除137 Cs[7]:先向原料液中加入石灰调节pH值,加沸石粉吸附和交换大部分重金属、有机物及放射性核素,再加入粉末活性炭,进一步去除有机物及残留放射性核素,最后进行微滤处理,137 Cs的脱除率达99.89%。化学预处理选择性地去除了废水中的有害物质,降低了膜分离过程二次废物的产生量,有利于延长膜的使用寿命。该方法操作简单,运行稳定,成本低,具有很强的经济竞争力。
Yong等[8]将微滤膜和絮凝作用结合起来组成絮凝-微滤(FMF)工艺,用于低放废水中241 Am的处理。他们先向膜反应器中加入NaOH,调节pH值为碱性,并与Am形成金属氢氧化物,再加入30mg/L的FeCl3溶液作絮凝剂,用以吸附氢氧化物胶体,形成絮状物,最后经微滤膜分离。料液中241 Am的放射性活度为809.2Bq/L,所得滤液中241 Am 的活度低于1.0Bq/L,结果表明絮凝-微滤工艺对241 Am的去除率高于99.9%。
中国工程物理研究院核物理与化学研究所研发出絮凝沉淀结合中空纤维膜微滤一体化处理工艺[9],在处理含锕系核素的废水中取得了很好的效果。邓玥等[10]采用无机离子交换吸附结合微滤膜处理工艺处理了含铯废水,并研究了不同吸附剂对134Cs的吸附效果,从中筛选出亚铁氰化锌钾作吸附剂,为进一步研究膜技术处理含铯废水打下了基础。
微滤属于精密过滤,其膜孔孔径分布较窄,导致截留的微粒尺寸范围狭窄、准确,直接利用过滤介质的孔隙筛分进行截留。与常规过滤相比,微滤能截留的微粒尺寸更小,效率更高,过滤的稳定性更好。
1.2 超滤法
超滤主要是以筛孔作用为主的薄膜过滤[11],在一定压力下,尺寸小于膜孔的小分子物质或溶剂可自由通过膜,而大分子物质被截留,从而实现分离净化。
Barbala等[12]采用水溶性多聚物-超滤膜从蒸馏液中脱除锕系核素(Am和Pu),采用两级过滤,用硝酸钕盐溶液作Am的替代废水。料液中Nd浓度为14mg/L,滤液中Nd浓度为0.01mg/L(ICP-AES的检测下限),鳌合基团与Nd离子的物质的量比随结合程度的不同而变化,处理30L料液后,Nd开始穿透超滤膜。根据以上实验结果,美国洛斯阿拉莫斯国家实验室Plutonium Facility(LAPF)做了一套置于防护箱的类似设备,继续深入开展了实验,并进行了多聚物的优选。这类技术的特点是利用化学方法将料液中的放射性金属离子和大分子水溶性聚合物配体结合组成螯合物,再利用超滤膜分离,水和未螯合的组分可自由通过超滤膜。通过调整滤液的pH 值,可使金属离子被释放,从而实现分离净化。
牟旭凤等[13]采用聚合物辅助超滤技术处理含Sr2+、Co2+ 的模拟放射性废水,选用相对分子质量分别为8000、50000和100000的聚丙烯酸作螯合剂,同时选用截留分子量为1000、3000和8000的管式氧化锆陶瓷超滤膜进行实验,实验结果列于表1。结果表明,膜的截留分子量越小,对金属离子的脱除率就越高,尤其是截留分子量为1000的膜,对Sr2+和Co2+ 的脱除率都高于99%。
与传统分离方法相比,超滤技术具有以下特点:超滤过程是在常温下进行,条件温和无成分破坏;不发生相变,无需加热,能耗低,是一种节能环保的分离技术;仅采用压力作为驱动力,因此分离装置简单、操作简便、易于控制和维护。
1.3 纳滤法
纳滤是以压差为推动力,截留水中纳米级颗粒物的一种膜分离技术。其技术原理类似于机械筛分,但纳滤膜本身带有电荷,这是其在很低压力下仍具有较高脱盐性能的重要原因。纳滤膜可在高温、酸、碱等苛性条件下运行,运行压力低,膜通量高。
白庆中等[14]采用聚丙烯酸钠辅助无机纳滤膜处理主要含90Sr、137Cs、60Co的放射性废水,重点考察了聚丙烯酸钠的量和pH值对3种核素的截留率和膜通量的影响,实验结果如表2(DF,去污因子)所示。结果表明,在pH 值为7~8、投加聚丙烯酸钠体积浓度大于0.1%时,料液中总β、总γ净化率达95%。
陈红盛等[15]采用分子量为3000的聚丙烯酸作为陶瓷纳滤膜的强化剂,用于分离高钠盐模拟溶液中的锶,考察了不同pH值、聚丙烯酸浓度及温度对膜通量和分离效果的影响,在适宜条件下,锶/钠的分离因子高达205。
无机纳滤膜具有体积浓缩倍数高、能耗低、耐酸碱、使用寿命长等优点,避免了有机膜在放射性废水中辐照分解、膜污染严重的缺点,从经济性和设备维护的角度看,采用无机纳滤膜处理放射性废水是可行的。
1.4 反渗透
反渗透是根据溶液的吸附扩散原理,以压差为主要推动力的膜过程。在浓溶液一侧施加一外加压力(通常1000~10000kPa),当此压力大于溶液的渗透压时,就会迫使浓溶液中的溶剂反向透过孔径为0.1~1nm 的非对称膜流向稀溶液一侧。反渗透过程主要用于低分子量组分的浓缩、水溶液中溶解的盐类的脱除等,其分离示意图如图1所示。
合成高分子反向渗透膜尽管可以承受较大的辐射剂量,但其操作pH范围为4~9[16,17],不能在强酸或强碱性溶液中使用。印度的K.Raj等[18]使用聚酰胺制成的反渗透膜处理低放废水(3.7×106 Bq/L),日处理量达100m3,废水体积可浓缩10倍,净化系数达8~10。
李俊峰等[19]采用硅藻土+两级反渗透+离子交换树脂吸附工艺进行了膜处理放射性废水的中试实验,当料液中总β活度浓度为32290Bq/L时,两级反渗透对放射性核素的总去除率可以稳定在99.9%以上,经离子交换树脂吸附后出水活度浓度低于1.1Bq/L,结果表明,该工艺可以用于内陆核电站放射性废水的处理。
王欣鹏等[20]选用聚酰胺反渗透膜对模拟核电站放射性废水进行了处理,考察了废水中主要存在的Na+、Ca2+ 金属离子在不同pH值、操作压力下对废水中钴离子的截留率及膜通量的影响,结果表明,Ca2+ 比Na+ 对钴的截留率的影响大,在pH=10、操作压力大于1MPa时,对料液中钴的脱除率大于98%。
熊忠华等[21]采用超滤+反渗透组合工艺处理了含Pu低放废水,用超滤取代传统的絮凝沉淀作前处理单元,不仅降低了二次污染,而且提高了废水体积减容倍数,满足了下一级反渗透的进水要求,改善了下游工艺的净化效果,研究了废水处理的去污效率和体积减容倍数的影响因素,实验结果列于表3。结果表明,当料液pH=10时,该工艺对Pu的去除率达99.94%,废水体积减容12.5倍。
1.5 膜蒸馏
膜蒸馏是基于原料液中各组分相对挥发度的差异而实现分离的,传输的推动力是透膜分压差,其特点是在常压和低于溶液沸点下进行,热侧溶液可以在较低的温度(如40~50℃)下操作,因而可以使用低温热源或废热。其分离过程如图2所示,热侧溶液中易挥发组分在热溶液-膜界面蒸发,蒸汽通过膜的微孔传输,在冷侧冷凝成液相[22],对不挥发组分和不能透过膜的大分子的截留率达100%。
Zakrzewska等[23]论证了膜蒸馏技术处理低放废水的可行性,实验中,膜进液侧温度为35~80℃,出液侧温度为5~30℃,处理量最高达1.5m3/h。实验结果表明,膜蒸馏法可以用于处理低放废水,对核素140La、133Ba、170Tm、114mIn、192Ir、110mAg、65Zn、134Cs几乎能够完全去除,对137Cs和60Co的净化系数也分别达到了43.8和4336.5。与常规蒸馏相比,膜蒸馏具有较高的蒸馏效率,蒸馏液更为纯净,无需复杂的蒸馏设备。膜蒸馏的缺点是:它是一个有相变的膜过程,热能的利用率较低,通常只有30%~50%,这是阻碍该过程大规模应用的关键问题之一。
1.6 支撑液膜
液膜是以分隔与其互不相溶的液体的一个介质相,它是被分隔两相液体之间的“传质桥梁”[24],通过不同溶质在液膜中的溶解度和扩散系数的差异,实现溶质之间的分离。按构型和操作方式的不同,液膜主要可以分为乳状液膜和支撑液膜。支撑液膜法是将液膜吸附在多孔支撑体的微孔之中,料液相和反萃相被阻隔在液膜的两侧,待分离组分由料液相通过支撑液膜向反萃相传递。
Teramoto等[25]验证了使用支撑液膜处理低放废水的可行性,模拟的低放废水包含NaNO3、550mg/L Ce3+、490mg/L Fe3+、320mg/L Cr3+ 和330mg/L Ca2+,反萃液为柠檬酸钠水溶液,当温度由25℃升高到45℃时,Ce的渗透率明显提高,若以1m3/d的处理量计算,脱除料液中550×10-6的Ce需要的膜面积为3.3m2。
Ambe等[26]将2-乙基己基磷酸氢萘烷涂覆在多孔PTFE(聚四氟乙烯)薄片上,制得疏水支撑液膜,用于稀土元素的脱除,配制含放射性核素Sc、Zr、Nb、Hf、Ce、Pm、Gd、Yb、Lu的硝酸溶液作模拟废液,结果表明,当料液pH 值为1.4时,Ce、Pm、Gd可达最高渗透率,21h内Ce和Pm渗透95%,Gd和Yb分别渗透80%、10%,而Sc、Zr、Nb、Hf和Lu不能透过膜。
支撑液膜技术具有选择性高、分离效率高的特点,与传统的溶剂萃取相比,将萃取和分离整合成为一步,大大减少了萃取剂的用量,并且简化了工艺流程。然而由于液膜是根据表面张力和毛细管作用吸附在支撑体的微孔中,所以在运行过程中,液膜容易发生流失而使分离性能下降,这也是制约支撑液膜技术工业应用的主要因素。
2、结语
在放射性废水处理方面,与传统工艺相比,膜分离技术具有出水水质好,净化系数高,系统运行稳定等优点。目前应用膜分离技术处理放射性废物的实验研究已取得突破性进展,国外已经开始使用膜分离装置处理核废水,但尚未实现工业化应用,同时各种膜过程膜污染控制有待进一步研究。
单一膜过程在放射性废水处理中的优势并不明显,组合膜过程能充分利用各单元技术的优点,使处理费用和处理效果达到最优化,同时应当注重废水的前处理,前处理的效果直接影响到工艺的净化效率。纳米粒子嵌入膜已被应用于水处理中,采用纳米粒子制膜不仅能够根据处理需要制得相应的膜结构,而且还能很好地控制膜污染,目前还没有将其应用到放射性废水处理中的报道,这是一个值得研究的新方向。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
中电环保在互动平台表示,公司在核岛放射性废水处理方面,已承接实施了桃花江核电厂放射性废液深化处理系统工程样机合作开发研制,去污因子主要包括碘、铯/铷、其他(不包括惰性气体、氚),完成了项目设计、开发、试验等研发工作并通过专家评审,放射性废液排放浓度满足国家对核电厂的排放标准要求,
据报道,中国首座高水平放射性废液玻璃固化设施11日在四川广元正式投运,标志着中国已经实现高放废液处理能力零的突破,成为世界上少数几个具备高放废液玻璃固化技术的国家,对中国核工业安全绿色发展具有里程碑意义。
北极星水处理网获悉,近日,生态环境部办公厅发布了关于公开征求《伴生放射性废水处理与排放技术规范(征求意见稿)》意见的通知,详情如下:
医疗污水定义医疗污水来源及成分较为复杂,其含有病原性微生物、有毒、有害的物理化学污染物和放射性污染等,并具有空间污染、急性传染和潜伏性传染等特征。医疗污水主要是从医院(综合医院、专业病院及其它类型医院)的诊疗室、化验室、病房、洗衣房、X片照相室和手术室等向自然环境或城市管道排放的
含铯废水主要来源于核工业的核燃料处理、原子能发电站的核裂变产物,以及应用放射性同位素的研究机构等,其水量可达数百千克至数万吨。其中137Cs不仅是铯的同位素中半衰期很长(T1/2=30a)的高释热裂变产物核素,还是和射线的主要放射源,其放射性在裂变产物总放射性中所占比例随衰变时间的延长而增大。
医院污水指医院门诊、病房、手术室、各类检验室、病理解剖室、放射室、洗衣房、太平间等处排出的诊疗、生活及粪便污水。当办公、食堂、宿舍等排水与上述污水混合排出时亦视为医院污水。医院污水含有大量致病微生物,具有传染性等危害,一般来说污水中含菌总量达1亿个/mL以上。其中致病微生物在环境中具
鞍钢矿业集团弓长岭露天铁矿何家采区部分矿床属于为铀铁伴生矿床,经过多年铁矿开采,已经接近铀矿床,造成矿坑水铀浓度偏高,给周围环境带来放射性污染的隐患。为了解决该问题,省核安全局在责令该单位进行停产整改的同时,多次组织召开弓长岭露天矿何家采区含铀污水治理研讨会,协调有关单位,讨论治
[据路透社网站2013年8月26日报道] 福岛核电站运营商东京电力公司表示,将邀请外国退役专家来对如何处理高放射性废水泄漏问题提出建议,日本暗示可能将动用36亿美元紧急储备基金,以帮助支付清污费用。日本经济产业省大臣茂木敏充周一称,他将成立一个小组负责清污工作,并派官员前往福岛监督操作。茂木敏充参观了受地震和海啸破坏的福岛核电站后告诉记者,“我坚决认为政府应该充分参与进来。”茂木要求东京电力公司更换存在泄漏风险的放射性废水储罐。东京电力公司上周承认,数百吨高放废水从2011年福岛核事故后迅速建造的约3
据路透社东京2013年4月11日报道,东京电力公司在紧急建造更多的储罐,以安全贮存放射性废水。福岛第一核电厂的工人到目前为止已经在现有325000t贮存空间的80%装入被反应堆污染的地下水。目前水转移和贮存系统的泄漏,增加了扩大贮存能力的紧迫性。4月11日,东京电力公司说,用于从泄漏水槽把放射性废水转移走的管道在不到一周的时间内泄漏了4次。(核信息院哈琳)
摘要:采用化学沉淀-吸附法处理电镀废水。首先,采用沉淀剂MgSO4·7H2O和Na2HPO4·12H2O对电镀废水进行化学沉淀处理。在优化条件下,氨氮的质量浓度由1600mg/L降低至80mg/L以下,磷的质量浓度为75.82mg/L然后,采用吸附法对电镀废水做进一步处理。最终电镀废水中氨氮和磷的残余质量浓度均达到《电镀污
本节主要讲解工业废水的化学处理,包括中和、化学沉淀、氧化还原、电解四部分内容。01、中和对于中和法的使用条件,是废水含酸碱浓度达到3%~5%以上时,才应考虑是否进行回收利用,如果浓度低于2%,回收利用不经济时,应采用中和处理。对于中和处理的选择因素,要遵循以下5点原则:1.浓度、水质、水量变
污水处理是指为使水质达到一定使用标准而采取的物理、化学措施。污水目前常用的处理技术有三大方法,第一:生物化学法,如活化污泥法,生物结层法,混合生物法等;第二:物理化学法,如粒质过滤法,活化炭吸附法,化学沉淀法;第三自然处理法,如稳定塘法,氧化沟法,人工湿地法等。其中第三种方法是介
摘要:如何将含氟废水除氟一直是国内重点关注的环保难题。重点介绍了近年来化学沉淀法、混凝沉淀法和吸附法在除氟方面的技术研究进展,并提出了今后努力的方向。关键词:含氟废水;除氟;混凝沉淀;高效吸附剂0前言氟是人体维持正常生理活动不可缺少的微量元素之一。适量的氟能促进牙齿和骨骼的钙化,有助于
摘要:近些年来,含氟废水污染问题和饮用水含氟超标现象愈来愈受到人们关注。着重介绍了沉淀法、吸附法、反渗透法及纳米材料在含氟废水处理中的应用。关键词:含氟废水;沉淀法;吸附法;反渗透法随着人们环保意识的不断增强,可持续发展的理念越来越受到重视。工业生产产生的废水、废气、废渣的处理是
人们对电子产品和化石燃料的需求会产生大量重金属污染,造成地球生态系统的破会,以及许多水源的污染。为了应对重金属废物,工业上最常用的方法是一系列物理化学过程、化学沉淀。然而,化学沉淀有很多缺点,包括二次废物的产生,化学药品的技术处理需要复杂的基础设施。为了克服这些困难,美国麻省理工
摘要:电镀集控园区的电镀废水若未经专业化电镀污水处理厂进行深度处理便随意排放,会对生态环境造成极大损害甚至不可逆。本文通过将化学沉淀法应用于电镀集控园区内的电镀废水处理工作中,从化学沉淀法的概述、电镀废水的来源、原理以及实际案例等方面对电镀废水深度处理展开详细讨论,从而实现指导具
摘要:随着经济不断发展,而水资源短缺形势十分突出,水资源问题己成为国家经济、社会发展的重要问题,而全球总水量的97.2%是海水,因此,从淡化海水并加以综合利用方面而言,是现实发展的正确选择,应用海水淡化技术,是解决现阶段我国水资源短缺问题的有效渠道之一。基于此,本文结合海水淡化工程中
摘要:以某含镍电镀废水为试验原料,采用化学沉淀法处理含镍电镀废水。试验通过调节溶液pH值、反应温度、双氧水的加入量对处理效果的影响,确定化学沉淀法处理含镍废水的最佳条件为:溶液pH为11、反应温度为60℃、双氧水添加量/含镍废水量为3%。处理含镍离子浓度为7840mg/L的含镍废水时,废水中镍离子
摘要:随着我国工业的不断发展,水环境中的重金属污染物已经成为一个日益突出的环境问题。本文介绍了重金属废水的定义、来源以及危害,并且对重金属废水的主要处理技术进行了总结。最后探讨了我国重金属废水治理的发展前景。关键词:重金属废水;污染现状;治理技术1.前言近年来,中国水环境污染问题
8月26日,嘉戎技术披露2022年半年度报告,2022年上半年,公司实现营业收入3.62亿元,同比增长25.78%;归属于上市公司股东的净利润4402.35万元,同比下降28.52%;归属于上市公司股东的扣除非经常性损益的净利润3502.61万元,同比下降15.34%;基本每股收益0.45元。公司主营业务为膜分离装备、高性能低温
高盐废水是指总含盐量至少3.5wt%的废水。高盐废水来源广泛、成分复杂,通常含有大量Cl-、SO42-、Na+、Ca2+、Mg2+等可溶性无机盐离子,以及含量不等的重金属离子。其中,火电厂洗煤工艺中产生的脱硫废水就是一种典型的工业高盐废水。因此,高盐废水的处理难度极大,能耗极高,并且处理过程中通常还伴有
盐湖提锂火了!在水务企业2021业绩整体表现不尽人意之时,很多企业开始将目光瞄向新的领域,而盐湖提锂这个站在“最强风口”上的赛道成为了如碧水源、巴安水务、久吾高科等膜分离技术企业的新的选择。那么,龙头企业们纷纷布局的“盐湖提锂”究竟是什么?他们为什么选择了这个赛道?盐湖提锂站上新风口
4月21日,厦门嘉戎技术股份有限公司(股票简称:嘉戎技术)敲钟上市,成功登陆深交所创业板。嘉戎技术本次公开发行股票2,913万股,其中公开发行新股2,913万股,发行价格38.39元/股,新股募集资金11.18亿元,发行后总股本11,649.7080万股。嘉戎技术主要从事膜分离装备、高性能膜组件等产品的研发、生产
4月8日,深交所官网发布《厦门嘉戎技术股份有限公司首次公开发行股票并在创业板上市网上路演公告》。厦门嘉戎技术股份有限公司首次公开发行人民币普通股A股并在创业板上市的申请已经深圳证券交易所创业板上市委员会审议通过,并已经中国证券监督管理委员会同意注册(证监许可[2022]499号)。嘉戎技术是
日前,中国石化联合会就《膜分离耦合法含苯系物废气治理工程技术规范》团体标准进行公开征求意见,详情如下:各有关单位:根据《关于印发2019年第一批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质函[2019]133号),由中国石油和化学工业联合会提出,中国化工环保协会组织制定的《膜
电渗析(ED),作为膜分离中发展较早的分离技术,是在电场作用下,以电势差为驱动力,利用离子交换膜对料液进行分离和提纯的一种高效、环保的分离过程。
光催化分离膜将膜分离与光催化结合在同一处理单元中,可发挥膜分离作用,同时也可以利用光催化剂高效降解水中的有毒有害污染物,提高膜的抗污染性能和水处理效率。因此是水处理领域的研究热点,并显示出巨大的应用潜力。本文综述了基于二氧化钛(TiO2)、氧化锌(ZnO)、石墨相氮化碳(g-C3N4)和氧化钨(WO3)四种常用催化剂的光催化分离膜的研究概况,重点对光催化分离膜的制备方法和性能进行了总结,光催化分离膜具有良好的发展前景,制备高效、稳定的可见光响应光催化分离膜是未来的发展趋势。
本文综述了近年来基于二维纳米材料的水处理功能膜研究进展,重点介绍了共混法、自组装等制备方法,并总结了此类功能膜在抗污染、膜通量恢复、强化污染物去除、调控盐截留及污染物监测领域的应用。最后对基于二维纳米材料的水处理功能膜发展方向,如限域催化、调控盐分离、监测传感等新兴领域进行了分析和展望。
本文不仅深入探讨了对不同目标组分(如水、离子、分子等)进行选择性分离的潜在膜材料、过程和机理,还讨论了发展高选择性膜材料和过程的实际需求、知识缺口、以及面临的技术挑战。本文还基于当前和未来的供水模式指明了高选择性膜材料的研究重点和方向。
7月6日—7月8日,青岛国际水大会在青岛西海岸新区顺利召开,大会以水资源、水环境、水生态、水安全为四条产业线,涵盖工业与城市污水资源化利用、城市饮用水安全保障、城市水务及智慧水务、海水淡化利用、膜分离技术、水生态修复、垃圾渗滤液处理以及污泥处理等诸多领域。陕西鼎澈膜科技有限公司(以下简称“鼎澈膜”)携最新产品——国产化高性能海水淡化膜参加本次大会,鼎澈膜营销总监王帅就产品特性、公司发展等问题与北极星环保网进行了深入交流。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!