登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
与进水指标相关的另一部分,就是膜系统污染问题,这个问题是业主或者设计单位考虑的重点,直接影响着项目的运行稳定性、后期维护成本。
ED系统的运行和维护,整体越来越趋于简单化,便捷化。目前行业涉及的科研人员、推广企业明显增加,是一个好的良性循环。
针对于电驱动膜的污染问题,尽管目前少数ED厂家配套研发团队,涉及这些基础工作的研究,但这些研究数据更多地服务于公司内部,很少会共享出来。
目前能查到的信息或者系统化的理论研究数据,更多地源于高校、院所等科研平台发表的资料。
1 ED-污染问题
ED系统的污染形式跟目前其它膜技术完全相似。主要为:辅助设备污堵、膜组器隔室污堵、电极板污堵或腐蚀、膜表面污染、膜孔道污染。
目前对于ED的研究,阴膜/阳膜表面、内部的膜污染研究为主流。而且表征这些膜污染的方式主要有:脱盐浓缩性能、电阻、交换容量、Zeta电位、扫描电镜等。
辅助设备污堵主要体现为保安过滤器污堵,一般为进水悬浮物过高。
膜组器隔室污堵主要为保安过滤后残留的悬浮物堆积、部分杂质析出等造成污堵。
电极板污堵或腐蚀主要跟电极板选型、极水溶液组成有直接关系。
目前对于电驱动膜系统的污染问题,更多地是研究组器内的污染问题。针对于这一部分的分析,系统一般都可以很明显的通过运行参数把问题反馈出来。主要监测参数:膜堆运行压力、运行流量、运行电流、运行电压等。
上述这些指标的变化,在后期运行维护中,可以直接用来确认是否在线清洗、离线清洗、拆洗。
在目前电驱动膜的应用过程中,只要在合理的系统设计指标范围内,基本在线冲洗或化学清洗即可满足工况要求。
基于近几年材料、装配水平的提高,工程经验的积累,目前ED的产品和系统有了一定量质的变化。针对于ED系统的后期维护,非常便捷,与常规的RO系统维护无异。
从目前ED污染的类别来分,依然以无机污染、有机污染、微生物污染等为主。这些污染可能造成膜电阻增加、系统能耗增大、隔室阻力增大、膜性能衰减等一系列问题,严重时,导致装置无法正常运行。
2 ED-无机污染问题
电驱动膜浓缩过程中,无机污染主要考虑无机结垢的风险,常规为难溶性无机盐、极化过程中氢氧化物沉淀等。
与此同时,上一篇文章提到的铁、锰等也可以算在无机污染风险中。这一类容易形成胶体或胶状类的风险因素,最好在前面预处理过程中进行处理,当然这个是非常理想的状态。
无机污染多数会造成隔室的污堵、膜表面和膜通道的污染等问题。其中无机结垢的风险中,国内的研发数据显示:基本是对电驱动膜组器中的阳离子交换膜有主要影响。
针对于极室结垢风险,现在在电驱动膜的系统中,存在频繁倒极电渗析(EDR)的技术,可以有效防止阴极液沉淀的产生,同时对于系统内的一些极化沉淀也有一些处理作用。这类产品技术具有优异的自清洗功能,但是会牺牲一定的处理量,因为正反向运行需要一定的工艺切换运行时间。
针对于难溶性的无机盐浓缩,目前的主流处理方式:1. 配套对应的预处理系统,进水离子浓度根据浓缩浓度反推进水要求;2. 减低浓缩浓度。3. 配套使用一些特种单价分离型离子交换膜产品或设备。
ED系统正常很少添加阻垢剂来降低无机结垢风险,但在某些特定的系统,某些ED厂家也有考虑添加阻垢剂,常规均为非离子型阻垢剂,这类阻垢剂需要做特定开发。
3 ED-有机污染问题
对于常规膜技术而言,有机污染一般风险系数比较高,或者比较难预测,这类污染主要也是针对于膜的污染,而且更多地是对阴膜的污染。
ED的作用之一是实现带电组分和不带电组分的有效分离,所以造成ED膜有机污染的很多是带电的有机物类别。在水处理系统中,带电的有机物大多数带负电,容易对阴膜造成污染,分为膜表面的吸附污染,膜孔内的污堵。
综合国内一些研究数据,有机污染的类别,根据主链主要分为脂肪型和芳香型,这些类有机物对ED膜污染风险较高。针对于污染机理,也有团队大致提出二点:1. 有机物与膜之间的相互作用;2. 有机物的几何形貌。
相互作用主要体现在膜与有机物之间的亲和力、静电作用。亲和力一般为芳香族物质,阴膜多具有芳香环结构,彼此间会有一定的亲和力,有共轭作用。静电作用主要为带电的有机物,与膜之间有很好的静电作用,吸附于膜表面。
有机物的几何形貌,简单来说,就是膜孔径大小与有机物分子的比较,对膜造成的影响,可能是沉积在表面或者膜孔内。
ED行业,我们会发现:很少有厂家会指出来ED进水COD指标需要严格控制在某指标以内。他们会提某些具体的类别及其含量的要求。
首先:阴离子表面活性剂,如高浓度的SDBS、APAM,在某些研究数据下显示,针对于常规的膜产品,这类物易造成膜表面和膜孔内部的双层污染,从而膜的有通道面积下降,膜电阻增大,而且这类污染一般较难清洗恢复。
其次:长碳链有机酸,如辛酸、癸酸等,通过国内的研究发现,分子量越大,碳链越长,越容易污染。这类物质低的流动性或溶解性导致他们更容易吸附在膜表面,形成一定的有机层,造成膜电阻增大,而且高电流密度时,有机层形成越快,污染也越容易。
第三:有机溶剂,如丙酮、甲苯等,溶剂对于ED膜的影响国内研究相对少一些,对于种类、浓度而涉及的正交实验比较多。部分溶剂会造成膜的溶胀,长期运行容易导致膜变形,在国内目前主流的一些螺杆锁紧的系统,它会慢慢地导致膜堆受力不均匀,从而出现渗漏、烧膜等现象。
第四:油和油脂类物质,如:硅基类物质,这类有机物容易吸附在膜表面,对膜的电阻和处理量能力影响非常迅速,尽管很多时候能用碱性的清洗药剂清洗恢复,但是频繁的碱洗对普通的膜寿命存在一定的影响。
有机物污染,一直以来都是有机膜材料致力于解决的问题。电驱动膜技术作为膜技术末端的处理工艺,同时也是主要的脱盐、浓缩工艺,目前很多ED厂家也在研发系列特种膜产品,而且也有一些产品面市。
4 结束语
现在电驱动膜系统的运行和维护,整体越来越趋于简单化,便捷化。在运行风险的控制方面,基本都可以配套合理经济的解决方案。
无机污染,这类风险可预测性较高。最常用的还是通过预处理的工艺配套来解决,其次是膜的选择、组器或工艺的特殊设计来控制。
有机污染,相对复杂一些。除了一些常规类别的物质,未知的系统则需要进行厂家的系统化评估,或者连续的小试、中试化过程验证。
在各类污染存在的情况下,清洗的操作不可避免。清洗药剂的选择、浓度的配置、工艺的设计等也是大家选择优化的方式,如:特殊清洗药剂、气洗、反洗、大流量冲洗等。
ED系统整体具有较高的灵活性,除了常规的在线清洗、离线清洗,在某些运行条件非常恶劣的工艺系统中,它还可以进行拆洗,这一点与RO膜维护存在明显的差异。
合理的预处理工艺配套、优化的ED系统设计、特种的ED膜材料和组器开发,是目前ED行业同步进行的三部曲。
延伸阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
摘要:文章综述了脱硫废水的水质特点及脱硫废水零排放的处理工艺;介绍了预处理单元、浓缩减量单元和固化单元的成熟技术;并对5个燃煤电厂脱硫废水零排放应用成功的典型案例进行了分析。结果表明,各电厂要从自身实际出发,选取适合本企业的技术路线。关键词:脱硫废水零排放;预处理单元;浓缩减量单
摘要:文章综述了脱硫废水的水质特点及脱硫废水零排放的处理工艺;介绍了预处理单元、浓缩减量单元和固化单元的成熟技术;并对5个燃煤电厂脱硫废水零排放应用成功的典型案例进行了分析。结果表明,各电厂要从自身实际出发,选取适合本企业的技术路线。关键词:脱硫废水零排放;预处理单元;浓缩减量单
电驱动膜技术作为当下主流的膜浓缩工艺之一,跟超滤膜技术类似,行业技术和产品多为非标。尽管电驱动膜技术目前应用较多,但ED的进水指标要求却给人比较模糊的印象。综合目前国内几大ED厂家的反馈,大致得到以下的信息:1ED-进水指标根据HJ/T334-2006、T/CAEPI19-2019等ED装置标准,常规电渗析装置进水
国际脱盐大会海水淡化与浓盐水综合利用论坛海水淡化技术创新与发展研讨会浓盐水资源开发与综合利用研讨会会议背景青岛国际水大会是高端国际学术和技术会议,在业内具有很大的影响力和知名度。会议旨在打造水资源、水环境、水生态、水安全的综合交流平台。2020(第十五届)青岛国际水大会将于9月15-18日如
摘要:简要介绍了纳滤膜、正渗透、电驱动膜等膜工艺,采用杭州水处理技术研究开发中心研发的膜组合集成工艺技术,对煤化工高盐废水进行分盐、浓缩、结晶制盐和制酸碱等。应用结果表明:膜集成工艺可以大幅减少蒸发量,降低蒸发器投资与结晶分盐的难度,双极膜电渗析装置可以替代蒸发结晶单元,使液体盐
09年以来,国内开始筹划页岩气资源调查、勘探、开发。随着这么多年行业的发展,资源勘探开发技术日益成熟,与此同时,页岩气资源开发带来的水资源挑战和环境污染,目前已然成了新的焦点。国内页岩气资源的分布,主要在四川、重庆、新疆、贵州、内蒙、陕西等地。页岩气一般采用水利压裂开采,生产过程中
1离子交换膜和电渗析的发展1.1电渗析在国外的发展历程电渗析技术的研究最早始于德国,1903年Morse和Prerce把两根电极分别置于透析袋内部和外部的溶液中无意发现带电杂质能迅速地从凝胶中除去;1924年Pauli对Morse的试验装置进行了改进,以便解决极化、传质速率等问题;1940年Strauss和Meyer又进一步提
摘要:随着环保要求越来越高,工业高盐废水的处理越来越受到人们的重视。基于此,本文分析了高盐废水的来源和特点,重点介绍了工业高盐废水处理技术应用现状及优缺点,并展望了高盐废水处理技术未来的发展趋势。关键词:工业高盐废水;处理技术;应用近些年来,我国的水污染形势越来越严峻,水处理技术
中国科学院过程工程研究所与鞍钢化学科技、鞍钢股份、邯钢公司和北京赛科康仑等多家企业合作,研发了焦化尾水资源化回用与近零排放的成套技术与组合工艺,并完成了技术示范,于10月20日通过了中国环境科学学会在北京组织的成果鉴定。由吴丰昌院士主持的鉴定委员会一致认为该技术达到国际领先水平,建议
2018年12月21日,“2018膜法水处理技术发展与应用论坛暨江苏省产业技术研究院膜技术转移大会”在江苏省南京市江北新区产业技术研创园腾飞大厦召开。此次大会,汇集国内外知名的相关企业、行业知名专家,以及相关领域的用户单位,大家济济一堂,从行业前沿科技开发到技术推广普及;再到市场化应用、全产
导读:近日,欧洲遭遇近年来最严重的大停电,情况如何?应对进展?究竟为何?本文先作初步分析和探讨。(来源:叶春能源作者:叶春)北京时间2025年4月28日18:33(欧洲中部夏令时12:33),西班牙与葡萄牙突发全国性停电,并迅速蔓延至法国南部、比利时及安道尔,影响人口超5000万。此次停电导致交通瘫
基本情况当地时间4月28日中午,西班牙和葡萄牙发生了大规模停电事故,两国多个地区的电力供应中断,波及超过5000万伊比利亚半岛民众,交通、通信、医疗等关键领域受到影响。此次停电覆盖西班牙本土近70%地区,持续时长从数小时至3天不等,导致直接经济损失超200亿欧元,并引发连锁社会反应。当天,西班
近日,2025能源网络通信创新应用大会在杭州召开,华为政企光领域副总裁刘利春发表了“以光促算,AI时代基于fgOTN的电力通信网”主题演讲。他表示,随着加速建设新型电力系统以及大模型的普及部署,电网需构建主配一体的通信目标网,为海量数据和大模型间提供确定性入算联接,提升电网调控水平,实现以
印度大型综合性集团信实工业有限公司(RelianceIndustriesLimited,简称RIL)宣布,已正式投产其异质结(HJT)太阳能组件制造项目的首条生产线,这是公司规划年产能10GW的一部分。在近日召开的2024财年第四季度财报电话会上,RIL首席财务官V.Srikanth表示,公司已投产首条GW级(gigawatt-scale)太阳能
北极星氢能网获悉,近日,江苏国富氢能技术装备股份有限公司(以下简称“国富氢能”)与印度AdvaitEnergyTransitionsLimited(以下简称“ADVAIT”)正式签署了具有战略意义的合作协议,标志着双方在全球氢能产业合作中的进一步深化。会议期间,ADVAIT和国富氢能签订了年度采购合同,在2025年内采购总额
在工业4.0时代,自动化水平不断提升,推动电机与机器人制造行业快速创新。为助力中国电机和机器人企业提升竞争优势,TEConnectivity(以下简称“TE”)工业自动化与电气事业部推出了专为国内市场设计的INMORO电机连接与机器人互联解决方案。凭借快速锁定、安装便捷、卓越EMC屏蔽和节约空间等特点,将更
北极星储能网获悉,4月23日,天齐锂业发布2025年第一季度业绩预告,其中净利润预计实现8200万元–12300万元,实现扭亏为盈。天齐锂业作为亚洲最大、全球第二大锂产品生产商,其主营业务包含锂矿采选、锂化工产品加工,产品包括碳酸锂、氢氧化锂等。但近几年以来,受海外锂矿业务影响,其营收净利润一直
4月15日,约旦工业、贸易与供给部国家生产保护局在约旦官方日报发布公告称,应约旦国内生产商PhiladelphiaSolarEnergyCompany(英文译名)申请,对原产于或进口自中国的光伏电池(参考英文:PhotovoltaicCellsassembledinmodulesorpreparedaspanels)启动反倾销调查。本案倾销调查期为2024年1月1日~20
近日,日本太阳能制造商TOYO宣布,其位于埃塞俄比亚的太阳能电池工厂于2025年4月初正式投产,年产能达2GW,这标志着该公司在非洲大陆的本地化制造布局正式开启。按计划,该工厂将在2025年4月底前向客户交付超80MW的太阳能电池产品,且在5-6月将月产能提升至150-200MW,实现全面达产。今年3月,TOYO便因
国家能源集团2025年第一批分散控制系统(DCS)集中采购公开招标项目招标公告1.招标条件本招标项目名称为:国家能源集团2025年第一批分散控制系统(DCS)集中采购公开招标,项目招标编号为:CEZB250203600,招标人为国能(北京)国际经贸有限公司,项目单位为:国家能源集团宿迁发电有限公司、国能保定
在2024年,全球主要光伏组件需求国普遍面临经济表现疲弱、电网消纳能力不足以及关税壁垒等挑战,导致光伏市场自2024年起进入成长趋缓的阶段。根据InfoLink统计,2024年全球光伏新增装机约为486GWac,依据各区域不同项目与容配比进行换算后,全球光伏组件需求约达584GWdc,较2023年成长26%。然而,相较
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!