登录注册
请使用微信扫一扫
关注公众号完成登录
作者简介:郝晓地(1960-),男,山西柳林人,博士,教授,从事市政与环境工程专业教学与科研工作,主要研究方向为污水生物脱氮除磷技术、污水处理数学模拟技术、可持续环境生物技术。现为国际水协期刊《Water Research》区域主编(Editor)。
01 评价方法
本研究针对地上式与地下式两种污水处理厂建设模式,分别采用全生命周期环境影响(LCIA)、全生命周期成本(LCC)与全生命周期生态效益(LCEE)3种方法进行评价。然后,将3种评价结果进行归一化与无量纲化,得出污水处理厂全生命周期综合影响(LCCI)指标,以比较两种建设模式在投入产出以及综合生态环境效益方面之优劣。
1.1 评价范围
研究评价时限覆盖污水处理厂建设、运行与拆除3个阶段;评价范围为自污水处理厂进水至出水,并包含污泥处理过程。
选择我国广东某地一座代表性全地下式污水处理厂的实际数据并结合文献参数进行评价。该厂厂区占地面积为1.83×104㎡、建筑面积为2.21×104㎡,采用两层全地下式结构设计;处理规模为10×104m³/d,采用A2/O+MBR处理工艺,水力停留时间(HRT)为7.43 h;出水水质执行国家一级A标准,水质不达标时需向曝气池投加液体硫酸铝予以化学除磷;污水处理厂服务年限为20年。MBR膜组件使用酸、碱和次氯酸钠溶液清洗。污泥经机械脱水后,折合产生干污泥12 t/d。本研究仅讨论污水处理厂构造模式,作为比较的地上式污水处理厂工艺流程与地下式完全相同,占地面积等信息亦相同,建造形式如图1所示。评价功能单位(FU)设定为每人每年平均排放污水量在处理过程中所产生的各种影响,即1 FU=1 PE·a。案例研究采用人均污水排放量为0.1 m³/d。
1.2 LCIA评价
LCIA是定量分析产品或生产工艺对环境影响的客观评价方法,其目的在于辨识并量化能源与物质消耗对环境造成的影响,并以此为依据进行积极调整,寻求最低环境影响方案。
本研究采用LCIA方法对污水处理厂产生的环境影响进行评价,评价目标包括污水处理厂运行中产生的直接环境影响以及物料与能源消耗伴生的间接影响;数据清单覆盖污水处理厂全生命周期中所有物料、能源消耗及其污染物排放,包括污水、污泥处理过程中产生的直接排放以及建材、药剂生产运输中涉及的资源/能源消耗所产生的间接排放。
环境影响评价方法依照国际环境毒理学与化学学会(SETAC)、国际标准化组织(ISO)及美国国家环保署(US EPA)等组织标准,按照分类、特征化和量化3个步骤分别进行。
案例污水处理厂环境影响可划分为:非生物资源耗竭潜能(ADP)、淡水资源消耗(FWU)、全球变暖潜能(GWP)、大气酸化潜能(AP)、水体富营养化潜能(EP)、人体毒性潜能(HTP)、填埋空间消耗(LSD)、黑臭水体潜能(BOP)等8个子影响指标。
1.3 LCC评价
LCC为统计分析产品在全部生命周期中所发生的总成本评价方法,可依照评价结果改善生产工艺与方法。本研究采用LCC评价方法分析案例污水处理厂的经济信息。
1.4 LCEE评价
LCEE是指自然或人造景观生物系统在全部生命周期内对人类生产、生活条件产生的有益影响,对其进行量化分析,可以用来评价其可持续性与良性循环能力。地下污水处理厂将处理工艺主体置于地下,而地表部分所建园林景观被视为最大优点。可见,在综合评价地下式污水处理厂过程中,LCEE评价不可忽略。
在LCEE中,将景观生态功能分为大气调节、土壤调节、生物功能、生产功能与文化功能等5大类,如表1所示。分别针对每项生态效益进行定量评价,再通过层次分析法(AHP)将结果统一为归一化无量纲结果。
表1 生态效益分类
1.5 LCCI评价
LCCI是针对产品各方面影响与效益分别进行评价后,将评价结果按照一定层次结构有机结合的综合评价方法。有别于LCIA等,LCCI不仅仅局限于单一层面,而是从多角度分析产品,客观反映出产品在不同情景下的状态与问题,以达到环境、经济、生态等多方面影响的和谐统一,避免因片面追求某一方面的优良效果而降低整体价值。
本研究采用LCCI评价方法,把案例污水处理厂综合影响评价结果作为总目标,以LCIA、LCC、LCEE三方面评价结果作为子目标层,将各评价指标结果值以AHP法进行权重计算、归一化和无量纲化,以此获得最终LCCI综合评价结果(LCCI=LCIA+LCC-LCEE)。设定LCCI结果正值表示对自然环境与社会产生了负面影响(如对环境排放污染物、耗费资金等),而负值则是产生了一定正面效益(如景观植被净化空气等)。
02 全生命周期环境影响评价(LCIA)
2.1 数据清单
案例地下式与地上式污水处理厂相关物质数据清单见表2。其中,地下式污水处理厂采用实际运行数据,并依据其数据推算得到所对应的地上污水处理厂基准。表2显示,在建设阶段,因地下污水处理厂纵向空间设计布局,额外增加了开挖基坑与建设大型地下框架结构的要求,所以所需建材与能耗远高于地上污水处理厂;在运行阶段,地下污水处理厂出水以及剩余污泥需要从地下提升至地表排放或处理,使污水处理单位能耗升高。此外,地下污水处理厂额外增添的照明与通风设备也相应增加了处理能耗;在拆除阶段,巨大基坑需要掩埋填平,导致建筑垃圾量增加,亦使施工能耗相应增加。
表2 案例污水处理厂LCIA评价主要影响物质清单
2.2 特征化结果
案例污水处理厂LCIA特征化结果列于表3,各类环境影响占比如图2所示。由于地下污水处理厂建设阶段投入较大工程量,使其对环境影响,特别是在非生物资源耗竭(ADP)方面明显高于地上污水处理厂;拆除阶段所需工程量也相应增大,导致拆除阶段各类环境影响大大升高。此外,两种污水处理厂在拆除阶段都呈现出较大的ADP占比,这是因为MBR工艺会增加拆除作业中的施工量,且会产生更多的建筑垃圾;运行阶段,因地下污水处理厂运行能耗较高导致环境影响略有增加。显然,地下污水处理厂在建设与拆除阶段较之地上污水处理厂会产生更大的环境影响,而这些影响均体现在污水处理厂的外部结构上,影响增大对核心的污水处理水平却未带来一丝益处。
2.3 归一化结果及环境综合影响
根据层次分析法,经过统计分析后,得到归一化矩阵:
基于此,案例污水处理厂环境影响归一化计算结果见表4。最终计算得到,地下式和地上式污水处理厂的LCIA值分别为2.42和2.12。
以上结果表明,地下式污水处理厂产生的环境影响较地上式要大(影响增加14%),即对环境造成了更大的负担,具有不可持续性。案例污水处理厂的环境影响主要集中在全球变暖潜能(GWP)、人体毒性潜能(HTP)与非生物资源耗竭潜能(ADP),而地下污水处理厂建设与拆除中大兴土木,额外增加了材料、能源消耗导致这些影响增加,使LCIA值变大。
03 全生命周期成本评价(LCC)
若设备使用年限设定为10年,则生命周期中共需更新1次设备。计算可知,本研究采用的折现率为7.84%。维护费用取固定资产的3%;管理费用取运行费用与固定资产的15%。案例污水处理厂的全生命周期成本统计结果列于表5。可知,地下和地上污水处理厂的全生命周期总成本分别为39.81、32.43元/FU,地下污水处理厂比地上污水处理厂高出22.8%。可见,无论在哪个阶段,地下污水处理厂都需要投入较高的成本,不利于资金筹措、周转与回报。
在总成本中,地下污水处理厂的建造费用所占比例较大,约为地上污水处理厂的1.31倍(与实际工程情况相符),归因于额外的地下空间开挖与构筑。此外,地下污水处理厂运行阶段管理与维护费用亦相应增加,主要为照明、通风系统以及污水、污泥提升所致。
案例地下污水处理厂的建设成本单价为4 910元/(m³·d-1),地上污水处理厂为3 750元/(m³·d-1),均远高于相同规模的普通二级污水处理厂的建设单价[1 471元/(m³·d-1)]。除地下污水处理厂额外地下空间开挖与构筑、配套设施与设备安装(占总工程费用的23.5%)因素外,MBR工艺造价较高(占总工程费用的20.1%)是另外一个原因。
04 全生命周期生态效益评价(LCEE)
4.1 生态效益分类与结果
地下式污水处理厂的园林景观为精心设计打理的人造绿化景观,可以认为具有气体调节、气候调节、空气净化、旱涝调节、水土保持、养分循环、休闲与文化等8个方面的生态效益,如表6所示。其中,休闲功能选取当地游览收入情况进行评价,但这并非指地上景观会成售票公园景点,而只是借助其潜在游览价值来表征居民对景观绿地的抽象感受。
各评价指标中所涉及的参数从相关文献中获得。其中,地上污水处理厂内同样可保留一定绿化面积;考虑到管理水平与植物密度均不及地下污水处理厂的园林景观,故设定其单位面积内的生态效益为地下污水处理厂地表园林的80%;此外,因地上污水处理厂绿地仅供员工休憩,其休闲价值按50%计,也不具备文化宣传效果(相应效益为0)。分析各项生态效益,结果列于表7。
4.2 生态效益量化结果
根据文献与案例污水处理厂所在地区情况,可以得到各项景观生态效益相对重要性判断矩阵。对判断矩阵进行一致性检验,以确认其逻辑性。计算结果显示,判断矩阵的一致性指标CR=0.009<0.1,证明该矩阵具有逻辑一致性。对该矩阵进行正规化,再对每行求和并正规化,可得向量:
这便是案例污水处理厂地上景观生态效益的权重值。基于此,对景观效益指标进行归一化,结果见表8。最终得到,地下和地上污水处理厂的景观生态效益指标LCEE值分别为1.34 E-03、7.64E-04,即地下污水处理厂的地表园林景观产生的生态效益约为地上污水处理厂的1.75倍。
污水处理厂附属景观或绿地的生态效益主要集中在气体调节(植被吸纳CO2,调节大气气体组成)、气候调节(植物叶片蒸腾作用调节周围温度)与旱涝调节(植被截留吸纳降雨)方面,均属于对环境的调节作用,而对人类生活活动(休闲与文化功能)则收益很小。
05 全生命周期综合影响评价(LCCI)
5.1 计算结果
经过LCIA、LCC、LCEE评价后,已分别得到了对应的评价指标值。再次以层次分析法对上述3种评价指标进行归一化与量化。归一化矩阵如下:
在本研究规定的全生命周期中,地下与地上污水处理厂对环境和社会产生的综合影响LCCI值分别为10.7、8.83。可知,地下式污水处理厂产生的环境、投资、生态综合影响较地上式高出21%。地下式污水处理厂的地表园林景观确实具有一定的生态效益,但与基建投资及其对环境的影响相比显然远无法实现效益“中和”。
5.2 讨论
本研究的综合评价结果与现行观点显然相左。这是因为景观园林具象,感官可以直觉,容易被人接受,而其背后隐含的环境影响以及基建投资等往往不被人所认识。其实,地下污水处理厂的地面景观罕有向公众开放,其真实功能也就相当于一块绿地的价值,也不能在上面开发房地产。
也有人认为地下式污水处理厂可以升值其周边的房地产价格。事实上,这只不过是对地下污水处理厂“眼不见为净”的浅显认识,地上污水处理厂目前也大都可以通过加盖封闭方式收集尾气并净化排放,对周围居民并没有太大的嗅觉影响。如果地下污水处理厂果真可以提高周边房地产价格,从环境经济角度看,这势必会间接增加环境污染物排放,因为“钱”的背后便是CO2、雾霾、废水等污染物。
因此,地下式污水处理厂的建设并非优选方式,需要因地制宜,选址需要特别慎重。在此方面,应该认真分析国外少有的地下污水处理厂选址、建设缘由。例如,荷兰鹿特丹Dokhaven污水处理厂、日本神奈川叶山町污水处理厂、芬兰赫尔辛基Viikinmäki污水处理厂、瑞典斯德哥尔摩Henriksdal污水处理厂(目前世界上最大的MBR地下污水厂,处理规模达86.4×104m3/d)等,或因确实缺地、或出于气候严寒需要保温措施而考虑建设地下式污水处理厂。无论如何,这些污水厂均充分考虑了利用当地地形,例如,鹿特丹Dokhaven污水处理厂利用了废弃船坞码头的深坑(深6~7 m),而神奈川叶山町污水处理厂、赫尔辛基Viikinmäki污水处理厂、斯德哥尔摩Henriksdal污水处理厂则利用了天然山洞。
06 结语
本研究通过全生命周期环境影响(LCIA)、全生命周期成本(LCC)与全生命周期生态效益(LCEE)三种评价方法对国内某全地下式污水处理厂进行定量评价,并最后归纳于全生命周期综合影响评价(LCCI)。结果显示,地下式污水处理厂在基建投资、环境影响、生态效益三方面的综合负面影响较地上式要高出约1/5。虽然地下式污水处理厂的地表园林景观会产生一定的生态效益,但这并不能“中和”其基建投资以及环境影响产生的负面效益。更何况,其产生的生态红利服务了发达城市,而环境负面影响往往转嫁至欠发达地区。
本研究虽基于理论计算与分析,但结果对地下污水处理厂建设的综合评价至少可以定性说明问题。不然,比中国更缺地的日本、欧洲等地的地下污水处理厂早已遍地开花。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月8日,金马污水处理厂二期项目-运营管理-设计-施工总承包/标段中标候选人公示。中标候选人第一名:(牵头人)中国电建集团成都勘测设计研究院有限公司、(成员)四川二滩国际工程咨询有限责任公司、(成员)中国五冶集团有限公司,投标报价:401579888.00元;中标候选人第二名:(牵头人)中国市政工程中南设
4月7日,四川省营山县城西污水处理厂扩能及管网改造项目招标计划公告。该项目对营山县城西污水处理厂进行扩能改造。扩建氧化沟、沉淀池、转盘浦池等,新建地下式河水调节池、排水潜水泵,新增中水回收处理设备。扩能后污水处理量从0.7万m/d达到1.2万m/d。配套改扩建污水管网合计70公里(其中DN600-DN800
据中铁上海局集团消息,2月19日,由中铁上海工程局集团市政环保公司承建的白洋淀上游首座、规模最大的全地下式污水处理厂——保定市鲁岗污水处理厂二期工程项目正式投入运营。保定市鲁岗污水处理厂二期工程采用全地下模式,地上为环保教育基地和劳动主题公园。该工程占地7.73平方千米,主要建设内容包
近日位于重庆市万州区的江南污水处理厂项目正井然有序地建设中,预计明年4月试运行。江南污水处理厂位于陈家坝街道向坪社区黄金水岸地块以北,占地面积6.4万平方米,其中一期面积约4.37万平方米,二期预留面积约2.03万平方米。该项目一期设计处理规模为4万立方米/天,拟新改建污水提升泵站4座,配套污
12月17日,河北鸡泽县城北污水处理厂建设项目(采购-施工-运营)总承包中标候选人公示。第一中标候选人:中节能国祯环保科技股份有限公司(联合体成员:中节能国祯工程有限公司、中节能国祯环保(鸡泽)有限责任公司),投标价格:134243658.60元;第二中标候选人:安徽国信建设集团有限公司,投标价格
11月27日,河北鸡泽城北污水处理厂采购-施工-运营总承包招标公告发布。[HBBH-2024-093]【鸡泽县城北污水处理厂建设项目(采购-施工-运营)总承包】招标公告1.招标条件本招标项目鸡泽县城北污水处理厂建设项目(采购-施工-运营)总承包(项目名称)已由鸡泽县行政审批局(项目审批、核准或备案机关名称
11月4日,烟台市辛安河污水处理厂三期工程特许经营项目中标候选人公示。中标候选人一:毅康科技有限公司,中铁四局集团有限公司,粤海水务控股有限公司,烟建集团有限公司,投标总报价:937517000元;中标候选人二:北京首创生态环保集团股份有限公司,中铁上海工程局集团有限公司,四川青石建设有限公
11月1日,烟台市辛安河污水处理厂三期工程特许经营项目招标恢复公告发布。公告显示,因异议事项已处理完毕,故恢复招标投标活动。该项目为特许经营项目,包含项目建设、运营、移交。项目内容为新建处理能力为10万m3/d的污水处理设施,以及厂外新增和扩建的管网。采用全地下式双层加盖的布置形式,主要
11月1日,山西太原市龙城污水处理厂工程特许经营项目中标候选人公示,第一中标候选人:北京碧水源科技股份有限公司(牵头人)、黑龙江碧水源环保工程有限公司(成员)、碧水源建设集团有限公司(成员)、中国市政工程华北设计研究总院有限公司(成员),投标报价2.3元/立方米。该项目合同估算价167157
10月28日,烟台市辛安河污水处理厂三期工程特许经营项目暂停公告发布。公告显示,因定标候选人公示期间收到投标人异议,本项目暂停,具体启动时间另行通知。本项目为特许经营项目,包含项目建设、运营、移交。项目内容为新建处理能力为10万m3/d的污水处理设施,以及厂外新增和扩建的管网。采用全地下式
10月23日,烟台市辛安河污水处理厂三期工程特许经营项目开标记录发布。投标人分布如下:投标人:北京首创生态环保集团股份有限公司,中铁上海工程局集团有限公司,四川青石建设有限公司,首创(香港)有限公司;报价:938230336.01元;投标人:毅康科技有限公司,中铁四局集团有限公司,粤海水务控股有
4月8日,土默特左旗金山污水处理厂特许经营项目中标结果公示。北京碧水源科技股份有限公司中标,中标金额203132000元。金山污水处理厂分为二期:1.金山污水处理厂一期基本情况,金山污水处理厂一期2009年由金山开发区承建,工程投资4532万元,资产于2019年12月整体移交城投公司运营管理。金山污水处理
日前,江苏宿迁发布《宿迁市2025-2026年度生态环境基础设施建设项目计划》。2025-2026年,全市生态环境基础设施重点工程项目共编排118个项目,计划总投资108.8亿元。其中:城镇生活污水处理设施新(改、扩)建工程项目43个,计划总投资22.4亿元;农村生活污水处理设施建设工程项目8个,计划总投资0.7亿
4月8日,湖南省发改委公布2025年省重点建设项目、省重点前期工作项目名单。省重点建设项目289个,省重点前期工作项目51个。其中生态环保项目5个。湖南城镇污水处理厂设备更新及污水管网改造项目湖南重点流域水环境综合治理项目长株潭一厅(湖湘绿厅)一道(核心生态绿道)娄星产业开发区涟钢周边环境综
作为达州东部经开区贯彻落实习近平生态文明思想的重要举措和高质量发展的重要基础设施,麻柳污水处理厂占地面积36.67亩,由工业污水处理系统和再生水厂两部分组成,设计总规模为2万立方米每天,分两期建设。其中,一期一阶段建设规模为日处理量5000立方米,于2022年12月底开工,目前整个项目已进入收尾
4月8日,金马污水处理厂二期项目-运营管理-设计-施工总承包/标段中标候选人公示。中标候选人第一名:(牵头人)中国电建集团成都勘测设计研究院有限公司、(成员)四川二滩国际工程咨询有限责任公司、(成员)中国五冶集团有限公司,投标报价:401579888.00元;中标候选人第二名:(牵头人)中国市政工程中南设
4月8日,四川安岳天然气产业园污水处理厂、再生水厂及配套设施建设项目招标计划。该项目新建工业污水处理厂1座,规模1.7万m/d,与再生水厂合建,再生水厂供水规模1.4万m/d。配套建设管网及道路等基础设施。项目总投资3.88亿,将于5月启动招标。
近日,广东省发展改革委发布《广东省2025年重点建设项目计划表》,共计2490个省重点项目清单。其中,重点建设项目1489个、重点建设前期预备项目1001个,分为基础设施工程、产业工程、民生保障工程三大类。北极星汇总汇总环保项目如下:惠城区农村生活污水治理工程项目中山市农村生活污水治理项目云浮市
日前,江西发改委发布2025年第一批省重点建设项目计划。2025年第一批省重点建设项目安排544项,总投资14735亿元,年度计划投资3857亿元。其中,建成投产项目159项,续建项目212项,新开工项目168项,预备项目5项,涵盖产业升级、基础设施、公共服务等多个领域。其中生态环保项目46个。北极星汇总环保项
近日浙江省发展和改革委员会发布了《关于印发浙江省扩大有效投资“千项万亿”工程2025年重大建设项目实施计划项目表的通知》。2025年,浙江将分两批安排扩大有效投资“千项万亿”工程项目,第一批拟安排重大项目1364个,总投资7.5万亿元,年度计划投资1.15万亿元,第二批将在6月份全部下达。北极星汇总
4月7日,长春市生活垃圾综合处理电站改建项目设计招标公告发布。长春市生活垃圾综合处理电站改建项目在现有厂区北侧新征建设用地1.8万平方米,新建2x875t/d机械炉排焚烧炉及配套设施,停用现有3#、4#循环流化床焚烧炉,1#、2#焚烧炉改为一用一备,汽轮发电机组利旧,全厂生活垃圾处理规模仍为2350t/d。
北极星电力网获悉,贵州省发改委发布2025年第一批向社会资本推介项目“三张清单”,涉及正安县土溪电站工程、六枝特区洒志风电场项目、福能(贵州)发电有限公司超低排放改造项目、贵州美锦华宇综合能源岛项目、盘州市出水洞水库坝后式电站工程等多个电力项目。全名单如下:贵州省2025年第一批向社会资
3月3日,为擘画新时代水务行业新目标、探索新路径、研究新方法,北控水务集团邀请产学研各界专家共话“未来新水务”。经过50天紧锣密鼓的酝酿筹备,世界地球日来临之际,4月21-22日,“未来新水务专家工作组第一次工作会暨未来新水务开发计划发布会”在北京延庆冬奥村顺利召开。本次发布会以“胸怀大局
节能降耗、污泥厌氧消化产甲烷、与工艺相关的能源利用等策略可有助于碳减排,但这些常规方法潜力距碳中和目标仍有相当距离。国外诸多案例表明,污水余温热能利用技术是污水处理领域实现碳中和运行的可行方案。在总结污水处理领域碳减排策略的基础上,评价分析其对碳中和的贡献。通过对国内案例计算分析
城市排水管道内存在复杂的微生物活动和物理、化学反应,产生了不容忽视的CH4无组织排放。综述了城市排水管道系统不同部位的CH4排放研究现状,估算了2016年我国城市排水管网CH4排放量为6.32MteCO2,为城市“隐形”CH4排放的重要来源;总结了管道内CH4排放的主要驱动因素是污水管道内的水力条件和污水特
编者按:从污水中回收磷的理论与实践始于上世纪末的欧洲,当时只是学术界和工业界的“自发兴趣”或“业余爱好”。当磷危机进一步逼近之时,普遍没有磷矿的欧洲意识到了问题的严重性,遂纷纷开始制定有关磷回收的政府条例。特别是当污泥焚烧逐渐演变为欧洲终极污泥处置大趋势后,各国均强调更高的磷回收
为响应国家双碳政策,保障饮用水水质安全,中国城镇供水排水协会科学技术委员会定于2022年8月18日-20日在苏州市召开以“探索水系统碳足迹,贯彻饮用水新国标”为主题的技术交流会暨2022年年会。本次会议将邀请行业专家,围绕饮用水新国标解读、水系统碳减排技术、污水污泥处理技术、水环境治理技术、供
2022年6月23日,中国城镇供水排水协会组织了《城镇水务系统碳核算与减排路径技术指南》(以下简称《指南》)专家评审会。会议由中国城镇供水排水协会会长章林伟主持,邀请了曲久辉院士、任南琪院士、侯立安院士、彭永臻院士、马军院士、徐祖信院士、国务院发展研究中心周宏春研究员、李艺大师、李树苑
2022年3月12日,由中国城镇供水排水协会(中国水协)牵头组织,北京建筑大学主编,会同北京首创生态环保集团股份有限公司、北京排水集团和中建环能科技股份有限公司等参与编制的《城镇水系统碳核算与减排技术指南》在首创环保国际会议中心通过线上线下相结合的方式举行了专家咨询会。会议邀请了曲久辉
10月18日,首创环保集团与北京建筑大学、MarkvanLoosdrecht教授(在线)在京共同发布了中-荷未来污水处理技术研发中心(以下简称中荷中心)一期技术成果,并进行了二期合作备忘录签署。此外,首创环保集团-北京建筑大学签署校企合作备忘录,启动十四五期间应对行业新形势的全面合作。北京市人民政府副秘书长程建华、北京市生态环境局副局长刘贤姝、中国城镇供水排水协会副秘书长高伟、首创集团党委副书记首创环保集团董事长刘永政、北京建筑大学党委书记姜廷泽等出席仪式。
本期编辑推荐栏目,为大家带来北京建筑大学郝晓地教授发表在《环境工程学报》2021年第9期的论文《污水处理厂的能源与资源回收方式及其碳排放核算:以芬兰Kakolanmki污水处理厂为例》。
一般认为,二氧化碳(CO2)对温室效应的贡献率最高。但对污水处理厂来说,甲烷(CH4)和氧化亚氮(N2O)这两种高温室效应(分别为CO2的25倍和近300倍)的气体则不容忽视,它们的释放往往使污水处理在实现“能量中和”时并不能形成“碳中和”。此外,污水在向污水处理厂传输过程中还会在化粪池或管道中因厌氧而产生CH4,除了会逸散大气成为隐形碳源,再就是CH4聚积后遇明火而频频发生爆炸事故。
“在水厂内种树”、购买“森林碳信用”来补偿水厂的碳排放。那这个方案到底是否可持续呢?这一技术思路在污水厂碳中和目标进程中是否能够帮助我们实现“小目标”呢?实际上,中-荷中心郝晓地教授已在多次场合提及到对这一方案的思考和看法,在此想通过分享一篇文章再次尝试说明下。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!