登录注册
请使用微信扫一扫
关注公众号完成登录
厌氧氨氧化技术是一种新型污水生物脱氮技术,在厌氧条件下厌氧氨氧化菌(Anammox)可利用NH4+-N和NO2--N直接生成N2,理论上可节省约60%的曝气量,100%的外加有机碳源和90%的剩余污泥产量。短程硝化工艺中氨氧化菌(AOB)可将NH4+-N转化为NO2--N,为Anammox 提供充足的基质。短程硝化与厌氧氨氧化工艺耦合可处理高NH4+-N、低C/N、可生化性低的废水,在晚期填埋场垃圾渗滤液、污泥消化滤液、食品制造废水、焦炉废水等高氨氮工业废水处理等领域已有应用。但是Anammox 对生长环境敏感,易受到渗沥液中大量有机物的冲击,目前还鲜有采用厌氧氨氧化处理垃圾焚烧厂渗沥液的研究。
本研究针对垃圾焚烧厂渗沥液难处理波动大的特性,采用厌氧消化反应器稳定水质,处理高浓度污染物,构建厌氧消化-短程硝化-厌氧氨氧化三段式组合工艺。在此期间系统考察各段反应器的脱氮效果,分析系统中有机物迁移转化、功能微生物活性等特性,并探究垃圾渗沥液特殊水质对自养脱氮系统内菌群结构的影响,以期为厌氧氨氧化技术处理水质复杂的垃圾渗沥液提供一定的理论指导。
摘 要
生活垃圾焚烧厂渗沥液是一种含高氨氮高有机物浓度的难处理废水,目前渗沥液生物脱氮多采用多级硝化反硝化处理工艺,存在能耗大、效率低等不足。本研究以厌氧氨氧化技术为核心,构建连续流厌氧消化-短程硝化-厌氧氨氧化三段式工艺,分析其中垃圾焚烧厂渗沥液的生物脱氮效果、有机物迁移转化规律、功能微生物活性及组成变化。研究结果表明,在进水NH4+-N浓度为900~1300mg/L,COD浓度为3300~4500mg/L时,系统处理效果良好,稳定运行期间总无机氮和COD去除率分别为85%、77%。其中厌氧消化段可去除约45%的COD,短程硝化段NO2--N积累率保持在97%以上,厌氧氨氧化段稳定运行期间总无机氮去除率约为85%,系统内也存在一定程度反硝化反应。接入渗沥液后自养脱氮体系中功能微生物氨氧化菌(AOB)和厌氧氨氧化菌(Anammox)的活性均有不同程度的下降,采用宏基因组学结合16S rDNA高通量测序技术对比分析微生物的群落和功能组成变化,发现渗沥液中高浓度的有机物使短程硝化段和厌氧氨氧化段内异养反硝化菌相对丰度上升,Anammox受到难降解有机物抑制,其中Candidatus_Kuenenia菌属适应性较强,在驯化后仍然可以维持厌氧氨氧化系统较高的脱氮效果。
01 材料与方法
1.实验装置与运行工况
本研究采用厌氧消化-短程硝化-厌氧氨氧化三段式耦合工艺处理垃圾焚烧厂渗沥液,装置整体为连续流,工艺流程如图1所示。厌氧消化段采用上流式厌氧污泥床(Up-flow Anaerobic Sludge Bed, UASB)反应器,有效容积为100L,稳定运行阶段进水流量为25L/d,水力停留时间为4d;反应区温度由外层水浴控制为35±2℃,部分出水超越到中间水箱。短程硝化段采用推流式缺氧/好氧(anoxic/oxic,A/O)反应器,有效容积为80L,反应器温度由水浴控制为35±2℃;稳定运行阶段进水流量为15L/d,水力停留时间约为5d;反应器出水进入沉淀池内,沉淀池底部污泥回流到缺氧区,上清液经过溢流堰出水进入中间水箱。厌氧氨氧化段采用颗粒污泥膨胀床(Expansive granular sludge bed, EGSB)反应器,有效容积为50L,稳定运行阶段进水流量为25L/d,水力停留时间为2d;温度由水浴控制为35±2℃。设置磁力泵进行回流,控制反应区上升流速为3m/h。
本实验中反应器启动时间不同,为便于讨论,将短程硝化和厌氧氨氧化反应器启动时间记为1 d,厌氧消化反应器自17 d启动,工艺运行至314d。235~244d由于假期暂停运行。短程硝化段稳定运行期间为280~314d,厌氧氨氧化段稳定运行期间为293~314d。
2.实验用水及污泥
厌氧消化反应器全程使用上海某垃圾焚烧厂渗沥液一级厌氧处理后的出水,该水中氨氮浓度为900~1800mg/L,COD为3000~20000mg/L。厌氧消化污泥种泥取自上海某垃圾焚烧厂渗沥液处理站厌氧罐,污泥以絮体为主,颗粒粒径较小,接种后污泥浓度为25g/L。
短程硝化和厌氧氨氧化反应器启动阶段进水使用合成废水,其中,前者的主要成分为NH4Cl和KHCO3,后者的主要成分为NH4Cl、NaNO2和KHCO3,主要成分根据反应器运行按需投加,其余成分及微量元素依照参考文献投加,稳定运行后接入实际废水。短程硝化污泥种泥取自上述垃圾焚烧厂硝化反硝化池;厌氧氨氧化污泥种泥取自课题组已稳定运行的SBR反应器。
3.分析测试方法
本研究中常规水质指标检测方法参考CJ/T51—2018《城市污水水质标准检验方法》,用重量法测定污泥浓度MLSS和混合液挥发性悬浮固体浓度MLVSS,CODCr采用快速消解分光光度法测定,NH4+-N采用纳氏试剂分光光度法测定,NO3--N采用紫外分光光度法测定,NO2--N采用分光光度法测定。采用三维激发发射矩阵荧光光谱(Three-dimensional excitation-emission matrix fluorescence spectroscopy,3D-EEM)定性分析各反应器进出水中溶解性有机物,采用比耗氧速率(Specific oxygen uptake rate, SOUR)来表征AOB活性,采用比厌氧氨氧化活性(Specific anammox activity,SAA)表征Anammox活性。使用16S rRNA和宏基因测序分析微生物群落组成结构。
02 结果与讨论
1.组合工艺对垃圾渗沥液的有机物去除和脱氮效果
1.1 厌氧消化段
厌氧消化段在运行期间主要考察了其对溶解性有机物的去除效果(图2),以CODCr表示。在进水水质波动较大时, UASB厌氧消化反应器可以起到很好的水质降解和缓冲作用。例如,第92天进水中CODCr高达17000±1000mg/L,CODCr出水有一定幅度的升高,但很快降低。整体来说,反应器出水水质较为稳定,实验后期出水中CODCr浓度可以维持在3000mg/L以下,CODCr平均去除率为45.4%。
本段进水的垃圾渗沥液为黑色不透明浊液,含有大量悬浮物质,本研究仅测定溶解性有机物,因此厌氧消化段对有机物的实际去除效果高于测定值;此外由于进水泥沙含量高,在反应器实际运行过程中管道易堵塞,需要定时清洗维护。
1.2 短程硝化段
短程硝化段1~106d为合成废水启动运行阶段;107d逐步接入厌氧消化段出水,实现了UASB反应器和A/O反应器的串联,运行效果见图3。由于水质波动较大,进水NH4+-N浓度也随之变化。本实验通过低溶解氧(DO)、高游离氨(FA)和高游离亚硝酸(FNA)浓度抑制硝化细菌(NOB)的生长,进而实现AOB的富集。由于AOB在有氧条件下可以将NH4+-N转化为NO2--N,控制曝气量在16L/min,使NH4+-N部分转变NO2--N,出水ΔNO2-/ΔNH4+在1.3左右,以此满足厌氧氨氧化段进水基质计量学需求。183d,由于无法精准根据水质波动调整曝气, NH4+-N浓度升高,有机物难以充分降解。
于是208d调整工艺策略,采用流量控制方法,控制中间水箱内ΔNO2-/ΔNH4+在1.3左右。本实验中短程硝化反应器出水中NO2--N浓度在700~1000mg/L,UASB反应器出水中NH4+-N在900~1400mg/L,按照厌氧氨氧化反应所需的基质比,短程硝化反应器出水体积与厌氧消化反应器出水体积之比控制在1.5较为适宜。因此根据厌氧消化段25L/d的处理量,控制短程硝化段进水为15L/d,超越量为10L/d,两者在中间水箱进行混合,作为厌氧氨氧化反应器的进水。
235~244d由于春节回家反应器暂停运行, 245~262d重新快速启动并于280d实现稳定运行,期间出水NO2--N浓度在800mg/L左右,积累率保持在97.3%以上,NH4+-N浓度稳定在20.8mg/L以下,总无机氮去除率为8.7±0.8%。
如图3(b)可知,经过短程硝化段可有效去除大部分有机物,在第2.2节中对短程硝化段进出水做三维荧光分析,结果表明好氧过程对有机物有非常好的去除效果,可进一步去除厌氧消化出水中剩余的易降解有机物和部分难降解的腐殖酸类物质,稳定运行期间短程硝化反应器CODCr平均去除率为60.1%,这也可为后段厌氧氨氧化提供更好的自养环境。可见,本研究中短程硝化反应器几乎不会被渗沥液水质抑制,流量的控制方法可实现工艺稳定运行。
1.3 厌氧氨氧化段
厌氧氨氧化段1 ~185d为合成废水启动阶段,运行效果良好;186d~207d逐渐接入实际废水,此阶段运行至314天,运行效果见图4。
208d调整进水策略,出水水质稳定;235~244d由于春节回家反应器暂停运行, 245d用合成废水重新启动, 263d接入实际废水,出水中NH4+-N、NO2--N浓度开始升高,这可能受渗沥液中复杂有机物的影响。
293d之后,反应器稳定运行,出水NH4+-N和NO2--N浓度分别稳定在42.2±6.3mg/L和36.5±5.1mg/L,说明厌氧氨氧化段内微生物经驯化后可适应渗沥液水质,出水中NO3--N在加入渗沥液后开始逐渐下降并稳定在47.2±5.2mg/L。厌氧氨氧化反应化学计量学比例ΔNO2-/ΔNH4+为1.32,ΔNO3-/ΔNH4+为0.26。在本研究中该段渗沥液运行后期ΔNO2-/ΔNH4+为1.49,ΔNO3-/ΔNH4+反应初期为0.20,表明厌氧氨氧化系统中有反硝化菌存在,部分NO2--N、NO3--N发生了反硝化作用,稳定运行期间ΔNO3-/ΔNH4+比例下降为0.13,推测是渗沥液中的有机物质使异养反硝化菌大量增殖,致使反硝化作用加强。
由图4(b)可知厌氧氨氧化反应器可以对进水中的有机物进一步去除,在渗沥液稳定运行期内出水CODCr浓度为760.8±15.6mg/L,平均去除率为38.7±1.9%。由于263d接入实际废水, CODCr进出水浓度增加,对应NH4+-N、NO2--N出水浓度升高,根据2.3.2节可知高有机物浓度会抑制Anammox活性,这与苗蕾等人的研究结果一致。本文第2.2节中三维荧光图谱显示厌氧氨氧化段进出水含有较多难降解的腐殖酸类物质,推测是这部分物质产生主要的抑制作用。
本研究中厌氧氨氧化段总无机氮平均去除率为85.1±2.0%,处理效果良好,但由于受到渗沥液中有机物的影响,处理效果稍低于无机配水阶段88.8%的去除率。组合工艺总无机氮和CODCr的去除率分别为84.6±2.7%和77.4±1.2%。厌氧消化-短程硝化-厌氧氨氧化三段式组合工艺较好地实现了对垃圾焚烧厂渗沥液的脱氮除碳效果。
2.三维荧光分析溶解性有机物的迁移转化
垃圾焚烧厂渗沥液的水质接近新鲜垃圾渗滤液,其中含有大量种类复杂的有机物,如挥发性脂肪酸、芳香族化合物、蛋白质、多糖、抗生素、腐殖酸等。本研究为进一步研究垃圾焚烧厂渗沥液处理过程中有机物的迁移转化过程,取各反应器在接入渗沥液后稳定运行阶段的进出水进行3D-EEM测试,得到结果如表2和图5。在测试结果中包含3个较为明显的荧光峰,对照已有研究初步判定三个峰所对应的物质为:富里酸类物质(A)、色氨酸类物质(B)和海洋腐殖酸类物质(C)。
渗沥液经强化厌氧处理后,色氨酸类物质的荧光峰(B)强度明显降低,这主要是因为色氨酸类物质属于易降解性有机物,厌氧消化反应器内的微生物可以将其降解。海洋腐殖酸类物质(C)的荧光峰前后变化不大,而富里酸类物质(A)的荧光峰强度则略微增加,海洋腐殖酸类物质和富里酸属于较难降解的腐殖酸,A峰强度增加推测是垃圾渗沥液中的植物残渣经微生物分解转化为了富里酸,导致其含量上升。
对比短程硝化段进出水荧光图谱,可以发现三个峰的荧光强度均明显下降(A、B和C分别下降了42.7%、32.7%和33.4%),这说明在好氧条件下可以进一步降解有机污染物,此外污泥EPS也可以吸附部分难降解的腐殖酸类物质。厌氧氨氧化反应器进出水的荧光图谱变化规律与厌氧消化反应器较相似。易降解的色氨酸类物质(B)通过微生物作用得以去除,荧光强度下降了29.3%。富里酸类物质(A)荧光强度略微上升,海洋腐殖酸类物质(C)基本不变。
在2.1.3节中厌氧氨氧化段接入渗沥液后总无机氮处理效果下降,推测是腐殖酸类有机物质抑制了Anammox,有学者认为腐殖酸可以进入细胞壁较薄的革兰氏阴性菌胞内,作为电子受体破坏电子传递链。
3.氮素转化功能菌活性变化
短程硝化-厌氧氨氧化系统的功能微生物AOB和Anammox菌都是化能自养型微生物,实际废水中有机物会影响功能菌活性和系统的稳定运行。本研究采用SOUR值和SAA值表征AOB和Anammox的活性,分析接入渗沥液前后功能菌活性变化,结果见表3。
短程硝化段AOB活性在接入垃圾渗沥液后降低15.7%,且具有显著性差异(p<0.05),说明实际垃圾渗沥液会对硝化菌活性产生一定的抑制作用,但由2.1.2出水水质可知该抑制作用并不会破坏短程硝化反应体系,反应器依然可以保持稳定的短程硝化效果。在第2.4.2节微生物群落组成分析结果也表明,在接入渗沥液之后AOB相对丰度下降,异养菌相对丰度上升,但AOB仍属于优势菌,其对垃圾渗沥液水质有一定的适应能力。
厌氧氨氧化段在接入渗沥液后SAA值降低了33.2%,且具有显著性差异(p<0.05)。经2.4.2中微生物群落分析可知Anammox相对丰度大幅下降,因此这很可能是活性降低的重要原因。有研究表明腐殖酸浓度达到70 mg/L时就会对厌氧氨氧化菌造成抑制,当腐殖酸浓度达到200 mg/L时,SAA会降低57%。结合2.2节分析,推测是渗沥液中的腐殖酸类物质等综合抑制了Anammox的活性,导致2.1.3节中厌氧氨氧化段处理效果的下降。相对而言,渗沥液对Anammox的抑制作用比AOB更强。
厌氧氨氧化段是本工艺的限速环节,在二者污泥浓度相差不大时,厌氧氨氧化段的处理能力要明显低于短程硝化段,因此本工艺的日处理量在很大一部分程度上受限于该段。
4.微生物种群分析
污水处理的微生物基本原理是深度解析污染物降解过程的关键,本研究采用16S rDNA高通量测序技术结合宏基因组学分析微生物群落组成。取短程硝化反应器无机配水稳定阶段和接入渗沥液稳定阶段的污泥,样品分别记为PN105和PN280;取厌氧氨氧化反应器无机配水稳定阶段和接入渗沥液稳定阶段的污泥,样品分别记为AMX160和AMX300。
4.1 基于16S rDNA测序的Alpha多样性分析
根据样本的 Shanon指数、Simpson指数、ACE指数、Chao指数对样品Alpha多样性进行表征,见表3,各样品计算Alpha多样性指数时OTU覆盖率均超过99%。Shannon和Simpson指数可反映微生物群落多样性,Shannon指数越高,Simpson指数越低,则生物群落多样性越高;Ace指数和Chao指数可反映微生物群落丰富度,其数值越高,群落丰富度越高。由表3可知,在接入垃圾渗沥液后,两反应器呈相似的变化趋势,Shannon指数、Ace指数和Chao指数升高,Simpson指数降低,表明在渗沥液存在条件下,短程硝化段和厌氧氨氧化段体系内微生物的物种数量、群落多样性和丰富度均有所升高,这也有助于微生物系统应对复杂的实际废水。
4.2 基于宏基因组的物种组成分析
本研究重点对短程硝化反应器和厌氧氨氧化反应器在门和属水平的物种组成进行分析,将相对丰度小于1%的菌门或菌属归入others类别中,得到结果如图6和图7所示。
两个反应器在门水平的微生物组成信息如图6所示。短程硝化反应器内微生物主要包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、和浮霉菌门(Planctomycetes)等。厌氧氨氧化反应器内微生物主要包括变形菌门、浮霉菌门、绿弯菌门、装甲菌门(Armatimonadetes)、放线菌门(Actinobacteria)和拟杆菌门等。
在接入渗沥液后,短程硝化段变形菌门相对丰度由38.8%增加至67.0%;厌氧氨氧化段变形菌门相对丰度由23.1%增至37.0%,这说明变形菌门菌群可以较好地适应垃圾渗沥液这一复杂水质。变形菌门包括氨氧化菌、亚硝酸氧化菌和大部分反硝化菌,这也是系统脱氮效果稳定的原因之一。
绿弯菌门细菌多数为兼性厌氧菌,对维持污泥形态结构有重要作用。在厌氧氨氧化段,绿弯菌门相对丰度变化不大,但在短程硝化段该门相对丰度在由20.2%下降至3.4%,这也导致短程硝化段内微生物结构松散,凝聚性较差。
拟杆菌门广泛存在与人类肠道和海洋中,对水质适应性强。拟杆菌门相对丰度在短程硝化段下降,在厌氧氨氧化段略微上升。浮霉菌门中有可进行厌氧氨氧化作用的Anammox菌,在接入垃圾渗沥液后,厌氧氨氧化体系中浮霉菌门相对丰度由21.2%下降至8.2%,表明渗沥液水质对厌氧氨氧化菌的影响较为显著。
两反应器在属水平的微生物组成信息如图7所示。短程硝化反应器内检测到的主要功能微生物为短程硝化单胞菌属(Nitrosomonas),这是一种常见的AOB。在接入渗沥液前后,Nitrosomonas相对丰度由26.8%降至5.7%,这也导致2.3.2节中AOB活性下降,但短程硝化反应器运行效果一直较稳定,推测是由于异养菌的大量增殖进而使相对丰度下降。Ottowia菌属是一种反硝化菌,属于变形菌门,其在含大量酚类物质的废水中易富集,在短程硝化反应器内,其相对丰度由0.2%逐渐上升至5.1%,这可能是因为渗沥液中含有较多的酚类有机物,这种菌的存在也解释了短程硝化段有机物较高的去除率,特别是2.2所述的难降解腐殖酸类有机物。
在厌氧氨氧化反应器内检测到3种常见Anammox属:Candidatus_Kuenenia、Candidatus_Jettenia和Candidatus_Brocadia,它们的相对丰度在接入垃圾渗沥液后分别下降了69.3%、90.9%和84.6%,说明渗沥液对厌氧氨氧化菌造成了较大程度的抑制,这也导致2.1.3中处理效果下降。其中Candidatus_Kuenenia下降幅度最小,表明其相比于Candidatus_Brocadia和Candidatus_Jettenia可以耐受更加恶劣的环境。另外,由于渗沥液水质中含有较多的有机物,厌氧氨氧化体系内反硝化菌属相对丰度由0.8%上升至1.8%。实际水体系中还存在大量未知菌种,其功能特性还有待研究。
03 结论
本研究采用厌氧消化-短程硝化-厌氧氨氧化工艺实现了垃圾焚烧厂渗沥液低碳高效脱氮处理,提出了流量控制的稳定脱氮策略,揭示了溶解性有机物在工艺中的迁移转化,分析了污泥浓度及氮素转化功能菌活性变化,最后解析了短程硝化和厌氧氨氧化体系微生物种群和功能的演替规律,主要获得以下结论:
1)在进水垃圾渗沥液NH4+-N浓度为900~1300mg/L,CODCr浓度为3300~4500mg/L,组合工艺HRT为11天实验条件下,总无机氮和CODCr去除率分别为84.6±2.7%和77.4±1.2%,出水中NH4+-N、NO2--N和NO3--N浓度分别为42.2±6.3mg/L和36.5±5.1mg/L和47.2±5.2mg/L。
2)短程硝化段在前期采用低DO和高FNA联合控制方式成功富集了AOB菌,后期采用流量配比的控制方式为厌氧氨氧化段提供充足的反应基质。在接入渗沥液后,微生物多样性增加,出现降解酚类物质的微生物,这可能是厌氧氨氧化反应器菌群应对实际废水中复杂有机物组分时的一种响应机制。AOB功能菌Nitrosomonas活性下降,受到轻微抑制,但其对渗沥液水质有一定的适应能力,可保持97.3%以上的亚硝酸盐积累率。渗沥液中存在较高浓度的有机物质,异养菌反硝化菌Ottowia菌富集,反应器中同时存在短程硝化和短程反硝化反应,这也保证了该段60.1%的CODCr去除率。此外,通过三维荧光光谱分析,该段去除的溶解性有机物不仅有易降解的色氨酸类物质,还可在有氧条件下吸附去除一定量的难降解腐殖酸类物质,减轻对后段厌氧氨氧化反应器的抑制。
3)厌氧氨氧化段是脱氮的核心区域,发生厌氧氨氧化反应和一定程度的反硝化作用,但Anammox功能菌对水质变化较为敏感,接入渗沥液后其相对丰度和活性均发生大幅下降,由于进水中含有未经短程硝化段处理的废水,推测认为腐殖酸可能进入厌氧氨氧化细菌胞内,破坏了其电子传递链,继而影响了厌氧氨氧化代谢活性。在Anammox功能菌属中Candidatus_Kuenenia对不良环境的适应能力稍强,经过一段时间的驯化后厌氧氨氧化系统可逐渐恢复优良的处理效果,该段在组合工艺中贡献约90%的总无机氮去除率。
4)本组合工艺处理过程中无需投加其它药剂,所需能耗主要为短程硝化段的曝气能耗。相比上海某渗沥液处理站采用的传统的硝化反硝化工艺而言,可节省25%的曝气能耗,100%的外加碳源药剂费。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月11日,广西鑫磐工程项目管理有限责任公司关于岑溪市生活垃圾焚烧发电特许经营项目中标公告发布。武汉天源环保股份有限公司、上海康恒环境股份有限公司联合体中标,报价:103.86元/吨。该项目概况:(1)生活垃圾焚烧发电厂:建设一座日处理500吨的生活垃圾焚烧发电厂,采用1×500吨/日的焚烧线,年
北极星垃圾发电网获悉,岑溪市生活垃圾焚烧发电特许经营项目招标,项目建设一座日处理500吨的生活垃圾焚烧发电厂,垃圾处理单价为105元/吨,合同履约期限40年,接受联合体投标,公示如下:项目概况:岑溪市生活垃圾焚烧发电特许经营项目招标项目的潜在投标人应在广西政府采购云平台线上获取获取招标文
3月18日,广西岑溪市生活垃圾焚烧发电特许经营项目招标文件预公示。文件显示,该项目建设内容如下:(1)生活垃圾焚烧发电厂:建设一座日处理500吨的生活垃圾焚烧发电厂,采用1×500吨/日的焚烧线,年运行时间不少于333天,配套12MW汽轮机+15MW发电机。配套新建处理300吨/日的渗沥液处理车间。主厂房内
北京市垃圾焚烧厂运行总体态势持续向好,2024年数据显示,全市入炉吨垃圾发电量达469千瓦时,同比增长5%,创历史新高。这一成效得益于垃圾分类的深入推进,全市入炉垃圾热值均值提升至7664千焦/千克,较垃圾分类实施前增长13.32%,为发电效能提升奠定基础。环保治理同步深化,全市焚烧厂活性炭投加量
北极星垃圾发电网获悉,云南省漾濞县协同化垃圾焚烧厂特许经营权合作方中标公示,清风(漾濞)环保科技有限公司中标该项目,中标垃圾焚烧处理费为226元/吨。项目估算价为14736.4万元,新建一座120吨/日垃圾焚烧厂,配套建设日处理能力5吨的餐厨垃圾、日处理100立方米的渗滤液、日处理5吨的市政污泥处理
北极星垃圾发电网获悉,漾濞县协同化垃圾焚烧厂特许经营权合作方中标候选人公示,清风(漾濞)环保科技有限公司为第一中标候选人,被推荐为中标单位,投标报价为226元/吨。项目估算价为14736.4万元,新建一座120吨/日垃圾焚烧厂,配套建设日处理能力5吨的餐厨垃圾、日处理100立方米的渗滤液、日处理5吨
北极星垃圾发电网获悉,云南省漾濞县协同化垃圾焚烧厂特许经营权合作方招标,项目估算价为14736.4万元,新建一座120吨/日垃圾焚烧厂,配套建设日处理能力5吨的餐厨垃圾、日处理100立方米的渗滤液、日处理5吨的市政污泥处理子系统,年处理量约30万吨核桃青皮,每个乡镇(除苍山西镇外)配套建设1座垃圾中
北极星垃圾发电网获悉,广西政府采购网发布岑溪市城市管理监督局2024年9月至10月政府采购意向,岑溪市生活垃圾焚烧发电项目计划将于10月采购。该项目预算金额40570.24万元,建设一座日处理500吨的生活垃圾焚烧发电厂,采用1×500吨/日的焚烧线,年运行时间不少于333天,配套12MW汽轮机+15MW发电机。配
北极星固废网获悉,9月2日,贵州省生态环境厅接连发布大方县、赫章县、纳雍县3座生活垃圾焚烧发电项目环境影响评价文件(报告书)审批意见的公示,据统计,浙江省、青海省、云南省也相继有垃圾焚烧发电项目环评公示,如下:1.贵州省大方县生活垃圾焚烧发电项目项目建设1条处理规模500t/d的焚烧线,配置
北极星垃圾发电网获悉,浙江省长兴县生活垃圾焚烧热电项目(一期)环评公示,项目建设一座800t/d(入炉量,最大880t/d)的生活垃圾焚烧热电厂,配置1条800t/d往复式机械炉排炉+余热锅炉的焚烧线及烟气净化系统线,配套1台9MW背压式汽轮发电机组,同步建设一套处理规模为220t/d的垃圾渗沥液处理站及其它
8月25日,正值“首都国企开放日”,集团所属安定循环经济园区生活垃圾焚烧发电厂迎来项目试运行后的首批参观人员。该项目是北京最大、全国领先的垃圾焚烧发电项目,每天可焚烧处理生活垃圾5100吨。在满负荷运行的情况下,除自用电外,每年可向电网输送绿电6.59亿千瓦时,约相当于30万户普通家庭一年的
北京市垃圾焚烧厂运行总体态势持续向好,2024年数据显示,全市入炉吨垃圾发电量达469千瓦时,同比增长5%,创历史新高。这一成效得益于垃圾分类的深入推进,全市入炉垃圾热值均值提升至7664千焦/千克,较垃圾分类实施前增长13.32%,为发电效能提升奠定基础。环保治理同步深化,全市焚烧厂活性炭投加量
北极星固废网获悉,9月2日,贵州省生态环境厅接连发布大方县、赫章县、纳雍县3座生活垃圾焚烧发电项目环境影响评价文件(报告书)审批意见的公示,据统计,浙江省、青海省、云南省也相继有垃圾焚烧发电项目环评公示,如下:1.贵州省大方县生活垃圾焚烧发电项目项目建设1条处理规模500t/d的焚烧线,配置
北极星垃圾发电网获悉,浙江省长兴县生活垃圾焚烧热电项目(一期)环评公示,项目建设一座800t/d(入炉量,最大880t/d)的生活垃圾焚烧热电厂,配置1条800t/d往复式机械炉排炉+余热锅炉的焚烧线及烟气净化系统线,配套1台9MW背压式汽轮发电机组,同步建设一套处理规模为220t/d的垃圾渗沥液处理站及其它
8月25日,正值“首都国企开放日”,集团所属安定循环经济园区生活垃圾焚烧发电厂迎来项目试运行后的首批参观人员。该项目是北京最大、全国领先的垃圾焚烧发电项目,每天可焚烧处理生活垃圾5100吨。在满负荷运行的情况下,除自用电外,每年可向电网输送绿电6.59亿千瓦时,约相当于30万户普通家庭一年的
杭州临江环境能源有限公司隶属于杭州市环境集团,2017年12月注册成立,注册资本7亿元,是一家专业从事固体废物的焚烧、处置为一体的大型国有高新环保技术企业。项目坐落于具有投资热土之称的杭州大江东产业集聚区内,以焚烧发电实现生活垃圾无害化、资源化处置。公司目前的主要经营项目为生活垃圾焚烧
自北京市2008年第一座生活垃圾焚烧发电厂投入运行以来,截至2023年底,共有12座垃圾焚烧厂建成投入使用,焚烧日处理能力达到18650吨,已累计处理生活垃圾4142万吨,2023年生活垃圾焚烧量占比达到71%,节能减排效益逐年提升。一是12座焚烧厂总装机容量582兆瓦,已累计发电163亿度,相当于北京市城乡居民
青岛市小涧西二期生活垃圾焚烧与污泥协同处置工程一、项目概况青岛市小涧西二期生活垃圾焚烧与污泥协同处置工程,由市城管局作为项目实施单位,青岛市固体废弃物处置有限责任公司作为政府出资方代表,上海康恒环境股份有限公司为社会资本方,建设方为青岛康恒再生能源有限公司。项目总投资约14.2亿元,
据北极星垃圾发电网统计,全国各地共9个垃圾焚烧发电项目近日发布采购意向,累计投资金额超7.5亿人民币,涉及河南驻马店、黑龙江大庆肇源、黑河逊克、黑河孙吴、湖北十堰、内蒙古鄂尔多斯、呼伦贝尔等地。项目详情如下:(一)项目名称:驻马店市生活垃圾无害化综合处理再生利用项目采购人:驻马店市市
北极星电力网获悉,贵州省思南县生活垃圾焚烧发电项目特许经营权启动招标,项目总投资约4.5亿人民币,新建一座垃圾总处理规模为1050t/d的生活垃圾焚烧厂,本次招标为一期项目,建设规模为700t/d,配置2条350t/d焚烧线+1台15MW凝汽式汽轮发电机组;紧邻本期锅炉房扩建侧预留二期(3#焚烧锅炉及炉后处理
北极星垃圾发电网获悉,贵州省思南县生活垃圾焚烧发电项目特许经营权启动招标,项目总投资约4.5亿人民币,新建一座垃圾总处理规模为1050t/d的生活垃圾焚烧厂,本次招标为一期项目,建设规模为700t/d,配置2条350t/d焚烧线+1台15MW凝汽式汽轮发电机组;紧邻本期锅炉房扩建侧预留二期(3#焚烧锅炉及炉后
北极星垃圾发电网注意到,本周多个垃圾焚烧发电项目发布协同处置技改项目环评公示。目前垃圾焚烧发电市场继续下沉,很多县域级项目因受当地生活垃圾产生量影响出现“吃不饱”现象,而与餐厨垃圾、污泥、工业固废等协同处置,在项目吃饱的同时,还能提升项目盈利空间。在目前增量市场扩张受限的情况下,
2025年4月10日10点58分,随着主控室并网指令的发出,由长江产业投资集团下属湖北省生态环保有限公司所投资的京山市生活垃圾焚烧发电项目顺利点火并成功并网发电,正式进入投产试运行阶段。发电机组的成功并网标志着京山市垃圾无害化处理、资料化利用及绿色能源可持续发展领域迈出里程碑式的一步。京山
项目概况:2025年柳河县生活垃圾外运处理服务项目的潜在投标人应在“政采云”平台(/)获取招标文件,并于2025年5月6日9点30分(北京时间)前递交投标文件。一、项目基本情况1.项目编号:ZLJJ-ZB-20250032.采购计划编号:采购计划-[2025]-00024号3.项目名称:2025年柳河县生活垃圾外运处理服务项目4.预算
一季度以来,山东环保集团旗下鲁控环保科技有限公司(以下简称“鲁控科技”)在餐厨垃圾处置领域持续发力,企业营业收入和利润较同期分别增长18.6%和10.9%,为全年突破发展打下坚实基础。餐厨垃圾处置方面一季度,鲁控科技餐厨垃圾处置总量较同期增长2%,这一增长得益于企业对各项业务制度流程进行梳理
4月8日上午,禄劝县生活垃圾焚烧发电项目开工仪式在禄劝产业园区标准化厂房东侧、新兴职业学院东南2公里处盛大举行,这一仪式标志着该项目正式进入建设阶段。项目开工仪式现场气氛热烈。各级领导、项目相关负责人、建设单位代表以及众多关心该项目的群众齐聚一堂。出席仪式的领导在致辞中强调了禄劝县
4月7日,上海环境举办FAST新工艺采风活动暨上海环境无废建设宣讲会,上海环境集团党委书记、董事长王瑟澜,副总裁邹庐泉出席并致辞,董事会秘书董政兵主持会议。会上,上海环境正式宣布,公司联合同济大学共同研发的“飞灰炉内低碳协同减量和无害化处理工艺”(以下简称“FAST工艺”)获得生态环境部复
项目概况:石屏县异龙湖流域生活垃圾转运焚烧服务(二次)招标项目的潜在投标人应在政采云平台线上获取获取招标文件,并于2025-04-2809:00(北京时间)前递交投标文件。一、项目基本情况项目编号:HHZC2025-G3-00965-YNDH-0010项目名称:石屏县异龙湖流域生活垃圾转运焚烧服务(二次)预算金额(万元)
3月31日,随着首辆垃圾运输车缓缓驶入卸料平台,元江县城市生活垃圾焚烧发电项目正式启动调试运行。作为重点环保工程,该项目的推进标志着全县垃圾处理难题将实现历史性突破,为滇南地区循环经济发展再添示范标杆。元江县城市生活垃圾焚烧发电项目以BOT模式建设,引入中国环境保护集团先进技术,采用国
北极星垃圾发电网获悉,宣城市绩溪县生活垃圾焚烧无害化处理服务单一来源采购公示,项目预算260万元,拟定宣城瀚蓝固废处理有限公司为单一来源供应商,公示如下:一、项目信息采购人:绩溪县住房和城乡建设局项目名称:绩溪县生活垃圾焚烧无害化处理服务拟采购的货物或服务的说明:标的名称:绩溪县生
3月26日-27日,第六届全国垃圾焚烧发电项目运营管理与创新应用研讨会于天津滨海新区圆满举办。此次研讨会以“顺势谋变破局”为主题,吸引了政府部门、知名专家学者、企业代表等近300位业内人士齐聚一堂,共探行业未来发展趋势,共破行业高质量发展之大局。康恒环境受邀出席,在多个环节贡献智慧,展现
北极星固废网获悉,贵阳市乌当区400吨厨余垃圾处置设施提标改造建设项目环评一次公示,项目工程总投资5200万元,主要建设内容包括前端餐厨垃圾收运系统更新完善1项、400t/d预处理工艺段提标改造1组、400t/d资源化利用工艺段提标改造1组、污水处理工艺设备更新1套、沼气利用及锅炉设备更新改造1项。公示
据深圳广业环保再生能源有限公司消息,3月29日,深圳平湖垃圾焚烧发电厂(一期)提升改造项目“72+24”小时试运行圆满完成,标志着该项目基本具备移交生产条件。平湖垃圾焚烧发电厂(一期)提升改造项目占地面积13.2万平方米,总投资约为9.83亿元,由深圳广业环保再生能源有限公司投资建设运营。本项目
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!