登录注册
请使用微信扫一扫
关注公众号完成登录
本文碳排放核算边界如图1所示,核算对象为污泥处理处置全流程,污泥处理包括深度脱水、干化焚烧、厌氧消化+干化焚烧,污泥处置包括污泥填埋和建材利用。间接碳排放包括污泥处理处置全流程中能量输入、药剂投加和运输等。直接碳排放包括污泥处理处置全流程中CO2、CH4和N2O的排放。碳汇包括厌氧消化生成的沼气产能和污泥灰渣建材利用。核算时,假设填埋气体全部得到回收,污泥厌氧消化工艺中产生的沼气和沼气燃烧产生的热量全部得到回用。
1.2 碳排放核算方法
本文选用《2006年IPCC国家温室气体排放清单指南》提出的排放因子法,根据IPCC提供的排放因子和部分符合我国国情的排放因子,结合工程实例进行计算。
本文计算的3种污泥处理处置技术路线的碳排放均以含水率为95%的浓缩污泥为处理对象,碳排放计算起点统一为污泥浓缩过程之后,计算如式(1)~式(12),如表1所示。
1.3 碳排放因子
计算中涉及的碳排放因子取值如表2所示。
二、浓缩后·污泥处理处置工艺的碳排放核算
2.1 污泥深度脱水(含水率为60%)+填埋的碳排放
浓缩后的污泥先进行深度脱水,然后进行填埋处置。
2.1.1 深度脱水的碳排放
根据相关标准规定,污泥填埋的含水率要求小于60%。以某污泥深度脱水工艺(投加FeCl3和生石灰药剂调理并采用隔膜压滤系统脱水)为例,污泥脱水后含水率为60%,过程的比能耗为50.5 kW·h/(t DS)。按式(5)计算深度脱水碳排放。
2.1.2 药剂投加碳排放
采用2.1.1小节的深度脱水工艺,投加的药剂为FeCl3(干污泥量的8%)和生石灰(干泥量的20%),按照《建筑碳排放计算标准》(GB/T 51366—2019)和IPCC给出的参考值,生石灰的碳排放因子为1.19 kg CO2/kg,FeCl3的碳排放因子为8.3 kg CO2/kg,按式(6)计算碳排放。
2.1.3 运输的碳排放
深度脱水后污泥长距离运输到填埋点过程会由于车辆耗油产生碳排放。假设运输车辆耗柴油,满载时能耗取0.255 kg柴油/km,空返能耗取0.153 kg柴油/km,柴油的碳排放因子为3.186 kg CO2/kg。取污泥产生点与污泥填埋点的距离为50 km,运输车辆满载重量为10 t。按式(7)计算污泥填埋运输过程的碳排放。
2.1.4 填埋的碳排放
假设脱水后污泥有机质(VS)含量为50%,填埋过程中实际分解的有机碳比例取IPCC推荐值50%,厌氧填埋的CH4修正因子可取100%,填埋气体中的CH4体积比为50%。根据式(8)计算出填埋的CH4产量,再根据其全球变暖潜能值计算CO2排放当量。
由表3可知,深度脱水的药耗和电耗的碳排放为947.2 kg CO2/(t DS),其中药耗碳排放比例较大,达到90%以上;深度脱水后污泥运输过程中产生的碳排放量较小,为16.2 kg CO2/(t DS),不是重要的碳排放源;污泥填埋会释放出大量未经收集利用的CH4气体,碳排放达到4 166.7 kg CO2/(t DS),属于高水平的碳排放工艺。脱水污泥填埋处置不仅占地面积大,且会对环境产生二次污染,应尽量避免。
2.2 污泥脱水(含水率为80%)+干化焚烧+填埋或建材利用的碳排放
浓缩污泥依次进行脱水(含水率为80%)、干化焚烧后,灰渣的最终去向包括填埋和建材利用。污泥干化焚烧包括干化系统、焚烧系统、烟气处理系统及相关配套供辅系统。主要能耗和电耗包括天然气(或蒸汽)、电能、药耗等。
2.2.1 脱水碳排放
浓缩污泥含水率为95%,经脱水后含水率为80%,此时脱水过程比能耗为28.3 kW·h/(t DS),按式(5)计算污泥脱水碳排放。
2.2.2 药剂投加碳排放
污泥脱水过程消耗的药剂主要是聚丙烯酰胺(PAM),投加量为污泥干基的0.20%~0.50%,本文取0.35%,PAM生产的碳排放量为30 kg CO2/kg,按式(6)计算。
2.2.3 污泥干化焚烧碳排放
以某工程干化焚烧系统为例,当VS为50%、污泥热值为12 000 kJ/(kg DS)时,干化焚烧阶段天然气比能耗为88.5 Nm3/(t DS),天然气的碳排放因子为1.98 kg CO2/m3。干化焚烧阶段电能比能耗为442 kW·h/(t DS)。根据式(9)、式(10)计算污泥干化焚烧的碳排放量。当污泥VS降低,干化焚烧阶段天然气比能耗相应增加。
2.2.4 污泥焚烧的N2O排放
污泥燃烧过程中会释放N2O气体,N2O的排放因子为990 g N2O/(t DS),按式(11)计算污泥焚烧的N2O排放,并根据其全球变暖潜能值得到相应的碳排放量。
2.2.5 灰渣填埋碳排放
若污泥焚烧充分,焚烧后只剩下无机灰分,其填埋不会再生成CH4气体,故灰渣填埋的碳排放量忽略不计。填埋过程运输碳排放参照2.1.3小节计算。
2.2.6 建材利用碳减排
根据《建筑碳排放计算标准》(GB/T 51366—2019),使用污泥焚烧后灰渣作为再生原料生产建材时,应按其所替代的初生原料的碳排放的50%计算,普通硅酸盐水泥的碳排放因子缺省值为735 kg CO2/(t水泥)。污泥焚烧灰渣可替代5%~20%的水泥矿物原材料,本文取15%。污泥焚烧后,灰渣重量为原污泥减去VS后剩余的干基重量,即当VS含量为50%时,灰渣重量为原污泥干基重量的50%,按照产生的灰渣全部用于建材再生原料,反算出水泥生产量,按式(12)进行碳排放计算。
由表4可知,污泥脱水的电耗和药耗的累加碳排放为130.3 kg CO2/(t DS)。污泥干化焚烧的天然气和电耗的累加碳排放为547.5 kg CO2/(t DS),其中约72%为电耗碳排放;干化焚烧的直接碳排放为295.0 kg CO2/(t DS),主要为N2O的碳排放,干化焚烧的总碳排放为842.5 kg CO2/(t DS)。因此,脱水+干化焚烧的总碳排放为972.8 kg CO2/(t DS)。
污泥焚烧后产物填埋不会再生成CH4气体,填埋的碳排放主要来自运输,仅为3.2 kg CO2/(t DS),脱水+干化焚烧+填埋的总碳排放为976.0 kg CO2/(t DS)。污泥焚烧后灰渣如果能作为再生原料生产建材,可以替代建材矿物原材料生产产生的碳排放,产生的碳汇为-36.8 kg CO2/(t DS),总碳排放为936.0 kg CO2/(t DS)。污泥干化焚烧后填埋或建材利用的碳排放基本相当,但灰渣建材利用可以产生碳汇,更利于碳减排。目前上海地区污泥焚烧灰渣已推广应用于建材利用。
2.3 污泥厌氧消化+脱水+干化+焚烧+填埋或建材利用的碳排放
浓缩后的污泥依次进行厌氧消化、脱水(含水率为80%)、干化焚烧,污泥的最终去向包括填埋或建材利用。
2.3.1 电能消耗产生的碳排放
厌氧消化的主要用电设备包括污泥泵(进泥泵和循环泵等)和污泥搅拌设备等。以某工程污泥厌氧消化系统为例,污泥厌氧消化电耗为105 kW·h/(t DS),电力排放因子取《2019年度减排项目中国区域电网基准线排放因子》电量边界排放因子平均值[0.895 t CO2/(103 kW·h)],按式(1)计算厌氧消化电能消耗产生的碳排放量。
2.3.2 污泥加热产生的碳排放
按照式(2)和式(3)计算污泥加热产生的碳排放,其中初始污泥温度取平均值(15 ℃),以中温厌氧消化(37 ℃)条件进行计算。K为水的比热容,取值为4.2 kJ/(kg·℃),锅炉产热的热效率为90%,IPCC给出的天然气碳排放因子缺省值为56.1 t CO2/TJ。
2.3.3 沼气产能产生的碳汇
我国剩余污泥VS含量差异较大,一般在50%~65%。根据《城镇污水处理厂污泥厌氧消化技术规程》(T/CECS 496—2017),污泥厌氧消化有机物降解率为35%~45%,本文取40%;沼气产气率为0.75~1.10 m3/(kg VS去除),本文取0.93 m3/(kg VS去除);沼气综合利用效率为0.95;根据《上海市温室气体排放核算与报告指南(试行)》,确定CH4热值为38.93×103 kJ/m3。按照式(4)计算厌氧消化沼气产能,再根据式(1)计算沼气替代化石燃料的碳减排量。
以某工程厌氧消化+干化焚烧系统为例,VS取值为50%,污泥消化后干基热值降低约20%,参照2.1小节和2.2小节的方法进行碳排放计算。
由表5可知,污泥厌氧消化的电能和热能碳排放为209.2 kg CO2/(t DS),厌氧消化产生沼气回收利用产生的碳汇为-385.9 kg CO2/(t DS),则厌氧消化的碳排放为-176.7 kg CO2/(t DS),即当VS为50%,污泥进行中温厌氧消化可以实现能量自给自足,且产能高于耗能。脱水的碳排放为104.3 kg CO2/(t DS),由于脱水程度不同,药剂投加种类和剂量不同,脱水碳排放远低于2.2小节中深度脱水的碳排放。厌氧消化后污泥VS含量降至37.5%,污泥干重降至40 kg,污泥热值降至约10 000 kJ/(kg DS),天然气比能耗增加到142 Nm3/(t DS),污泥干化焚烧的间接碳排放(天然气和电耗)为493.9 kgCO2/(t DS),其中天然气约占36%,电耗约占64%。干化焚烧的直接碳排放为236.0 kg CO2/(t DS),干化焚烧总碳排放为729.9 kg CO2/(t DS)。厌氧消化+脱水+干化焚烧的总碳排放为657.5 kg CO2/(t DS),比2.2小节中脱水+干化焚烧的碳排放[972.8 kg CO2/(t DS)]低约32%。
污泥焚烧后灰渣填埋碳排放为2.6 kg CO2/(t DS),建材利用的碳汇为-45.9 kg CO2/(t DS)。因此,污泥厌氧消化+脱水+干化+焚烧+填埋的碳排放为660.1 kg CO2/(t DS),污泥厌氧消化+脱水+干化焚烧+建材利用的碳排放为611.6 kg CO2/(t DS)。由2.2小节和2.3小节可知,厌氧消化+干化焚烧+填埋/建材利用比直接干化焚烧+填埋/建材利用的碳排放减少约30%。
三、污泥处理处置路线碳排放比较
根据上述碳排放方法计算,以上述某工程的厌氧消化和干化焚烧系统为例,可以计算出不同VS含量的浓缩污泥对应的不同处理处置过程的碳排放。
当干化焚烧进泥含水率为80%,VS含量为50%、55%、60%、65%时,焚烧时天然气比能耗分别为76.7、56.0、34.7、14.7 Nm3/(t DS),电能比能耗为442 kW·h/(t DS),不同处理工艺的碳排放如图2所示。
随着污泥脱水后含水率降低,第三种技术路线的碳排放相应降低,这是因为污泥干化焚烧的能耗随着污泥脱水后含水率的降低而降低,且当污泥脱水后含水率降至一定程度时,焚烧炉不仅能自持燃烧,焚烧产生的蒸汽还能进行回收利用产生碳汇。由图4可知,当浓缩污泥VS达到70%,污泥脱水后含水率达到55%时,厌氧消化+干化焚烧+建材利用的碳排放为负值,即污泥处理处置全流程达到碳中和。
结束语
以含水率为95%的浓缩污泥为起点,比较深度脱水+填埋、脱水+干化+焚烧+填埋/建材利用、厌氧消化+脱水+干化+焚烧+填埋/建材利用的碳排放量,结果如下。
1)污泥处理工艺中,当浓缩污泥VS含量在50%~65%时,深度脱水的碳排放和厌氧消化+脱水+干化焚烧的碳排放相当,脱水+干化焚烧的碳排放最高。深度脱水的主要间接碳排放是深度脱水的药耗,脱水+干化焚烧的主要间接碳排放是干化焚烧的天然气能耗和电耗,主要直接碳排放是N2O。
2)从污泥处理处置全流程碳排放来看,当填埋处置时,随VS升高,深度脱水后填埋的碳排放始终远高于干化焚烧后填埋的碳排放,前者为后者的5倍以上,直接干化焚烧和厌氧消化后再干化焚烧的碳排放量相当。深度脱水后填埋为高碳排放处置方式,应尽量避免。
3)结合污泥最终去向和工程实例,第三种污泥处理处置技术路线更具碳减排优势,且当浓缩污泥VS含量和污泥脱水后含水率达到一定要求时,可以实现污泥处理处置全流程碳中和,应加快推广应用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星售电网获悉,近日,山西省生态环境厅等五部门发布了关于印发《山西省碳普惠公众参与机制建设工作方案》的通知,其中提到,建立健全碳普惠管理机制,制定碳普惠管理制度及配套规则,规范碳普惠运行模式和核算方法学,加强对碳普惠公众参与平台运营的指导和管理,加强对减排量交易及相关活动的监督
“没想到现在充电这么快,只要半小时就能充满80%的电了,据说充的还都是绿电。”4月11日,在浙江次坞高速服务区,刚充完电的新能源车主张先生满脸欣喜。就在当日,浙江首个智慧零碳供能高速服务区——次坞高速服务区在经历3个月的试运行后正式投运,投运后预计每年可实现128万千瓦时绿电替代、减少碳排
4月6日,由水电四局承建的内蒙古重大新能源项目——乌兰布和沙漠一期光伏发电项目五标段成功并网发电,标志着该标段发电系统正式接入国家电网。乌兰布和沙漠东北部新能源基地先导工程100万千瓦光伏发电项目位于内蒙古自治区巴彦淖尔市磴口县城西南侧的乌兰布和沙漠。中国水电四局承建的一期五标段承担
北极星氢能网获悉,近日,中国石油天然气管道工程有限公司联合管道科学研究院召开《康保输氢管道材料性能确定及评估技术研究》课题阶段讨论会,深入研究钢管及环焊缝氢相容性试验课题。该课题基于国内距离最长、规模最大的输氢管道——康保-曹妃甸输氢管道项目开展,用以支撑该项目建设,助力管道局在
4月9日,由上海市水务局、上海交易集团、上海环境能源交易所牵头举办的水权交易品牌发布暨“水善流”取水权行政管理服务信托启动仪式在上海环境能源交易所举行。该信托为全国首创的绿色金融产品,上海环境下属天马再生能源项目2025年度70万方取水权被纳入首批信托。取水权信托是指拥有富余额度的取水权
What|什么是“绿电直连”?“绿电直连”在我国并非新概念,从《“十四五”可再生能源发展规划》(发改能源〔2021〕1445号)提出的“新能源直供电”,到《关于大力实施可再生能源替代行动的指导意见》(发改能源〔2024〕1537号)提出的“绿电直供”,再到《关于支持电力领域新型经营主体创新发展的指导
4月8日,应中国国家原子能机构邀请,国际原子能机构总干事格罗西到访中国,首站走进中核集团海南昌江核电基地,实地调研全球首个陆上商用模块化小型堆玲龙一号工程,并见证《中国小型模块堆通用用户要求文件》发布。他高度肯定中国在世界核电发展中的示范作用,并为中国小堆的发展点赞。他指出,中国通
4月3日,笔者从国网江苏省电力有限公司(以下简称“江苏电力”)获悉,三大“水电入苏”工程累计向江苏输送来自西部的清洁水电超7000亿千瓦时,相当于减少二氧化碳排放超6亿吨,为江苏经济社会发展注入源源不断的“绿色动能”。江苏作为经济强省,年用电量位居全国前列,但省内能源资源相对匮乏,难以
北极星氢能网获悉,2025年一季度,国家能源集团累计生产绿氢367吨,累计销售绿氢368吨,连续3个月绿氢产量突破100吨,与去年四季度相比,绿氢产销量提升均达到50%以上,实现首季开门红。作为国内最早开展氢能产业布局的中央企业,国家能源集团将氢能列为集团战新产业和未来产业的重要方向,加速构建“
4月6日,绿色动力公告,公司于4月3日与固高科技签订《战略合作协议》。双方将发挥各自企业的优势开展合作,促进固高科技技术装备应用到绿色动力厂区管理之中,推动产业现代化,培育壮大新兴产业和未来产业。根据协议,双方计划从以下三个方面展开合作:一是产业现代化有关技术研发合作,双方就智能巡检
北极星储能网讯:近期,各大上市企业陆续开始披露2024年度财报,值得注意的是,“储能技术”已经不仅是能源企业业绩亮点,更开始高频出现在各类高耗能企业财报。尤其在数字化高速发展、建材产能淘汰面临困境时,储能已经成为这些企业节能减排、降低用能成本的重要手段。钢铁行业——南钢股份行业下行周
4月8日,土默特左旗金山污水处理厂特许经营项目中标结果公示。北京碧水源科技股份有限公司中标,中标金额203132000元。金山污水处理厂分为二期:1.金山污水处理厂一期基本情况,金山污水处理厂一期2009年由金山开发区承建,工程投资4532万元,资产于2019年12月整体移交城投公司运营管理。金山污水处理
当前,垃圾焚烧发电行业的数智化技术已经取得了显著成效。该技术通过大数据分析、机器深度学习和人工智能管理,可以实现垃圾焚烧的精准预测、智能控制、稳定运行和高效燃烧。在大数据飞速发展的今天,垃圾焚烧发电行业与数智化结合越来越紧密,以上海环境为代表的垃圾焚烧发电龙头企业肩负起助力行业高
日前,江苏宿迁发布《宿迁市2025-2026年度生态环境基础设施建设项目计划》。2025-2026年,全市生态环境基础设施重点工程项目共编排118个项目,计划总投资108.8亿元。其中:城镇生活污水处理设施新(改、扩)建工程项目43个,计划总投资22.4亿元;农村生活污水处理设施建设工程项目8个,计划总投资0.7亿
4月8日,湖南省发改委公布2025年省重点建设项目、省重点前期工作项目名单。省重点建设项目289个,省重点前期工作项目51个。其中生态环保项目5个。湖南城镇污水处理厂设备更新及污水管网改造项目湖南重点流域水环境综合治理项目长株潭一厅(湖湘绿厅)一道(核心生态绿道)娄星产业开发区涟钢周边环境综
北极星固废网获悉,昆明市西郊有机垃圾处理特许经营项目及五华区低碳环保循环经济产业园废旧资源利用区(380亩)开发项目招标计划发布,项目总估算投资约92500万元。项目概况如下:(1)昆明市西郊有机垃圾处理特许经营项目占地面积66.35亩,建设内容包括餐厨垃圾处理系统、粪便处理系统、沼气处理及利
日前,北京经济技术开发区管理委员会印发《北京经济技术开发区污水处理项目补贴标准(试行)》。文件明确,补贴范围为亦庄新城范围内,适用于运营期内项目的运行补贴。补贴对象为由北京经济技术开发区组织实施的城镇污水处理项目(不含为应对突发状况、短期需求或特定过渡阶段而设立的污水处理项目)运
作为达州东部经开区贯彻落实习近平生态文明思想的重要举措和高质量发展的重要基础设施,麻柳污水处理厂占地面积36.67亩,由工业污水处理系统和再生水厂两部分组成,设计总规模为2万立方米每天,分两期建设。其中,一期一阶段建设规模为日处理量5000立方米,于2022年12月底开工,目前整个项目已进入收尾
4月9日,驻马店市驿城区汝河流域生态环境治理与产业发展融合EOD项目工程总承包(EPC)招标公告发布。驻马店市驿城区汝河流域生态环境治理与产业发展融合EOD项目位于位于我区诸市镇境内,总面积10199.56亩,主要内容包括:诸市镇汝河段水环境综合治理项目、现代智慧化绿色低碳农产品种植及加工项目、和
4月8日,财政部、住房城乡建设部发布《关于开展2025年度中央财政支持实施城市更新行动的通知》。根据通知,2025年,中央财政支持实施城市更新工作的范围为大城市及以上城市,共评选不超过20个城市,主要向超大特大城市以及黄河、珠江等重点流域沿线大城市倾斜。中央财政按区域对实施城市更新行动城市给
4月8日,金马污水处理厂二期项目-运营管理-设计-施工总承包/标段中标候选人公示。中标候选人第一名:(牵头人)中国电建集团成都勘测设计研究院有限公司、(成员)四川二滩国际工程咨询有限责任公司、(成员)中国五冶集团有限公司,投标报价:401579888.00元;中标候选人第二名:(牵头人)中国市政工程中南设
4月7日,山东青岛高新区西片区污水厂工程招标计划发布。该项目一期建设规模为土建按照5万吨/天建设,设备按照5万吨/天安装,一期项目总投资约6.7亿元,主要建设内容包括地下污水处理箱体及办公楼、变配电站、臭氧发生间等设施。估算投资6.7亿元。
4月7日,广东阳江三山岛500千伏海上风电柔直输电工程全面开工,这是我国首个海陆一体送出工程,将广东阳江三山岛的海上风电源源不断送往粤港澳大湾区。据介绍,该工程起于广东阳江三山岛风电场,止于广东江门,线路总长293公里,其中,海底电缆长115公里、陆上输电线路为178公里。工程总投资约103亿元
4月10-12日,2025ESIE第十三届储能国际峰会暨展览会在北京盛大召开。作为全球领先的新能源数字化解决方案商,英臻科技携旗下能睿(UniEnergy)——新能源资产全周期数字化管理平台亮相,以扎实的技术实力与创新方案吸引众多关注,彰显出在新能源数智化赛道的深厚底蕴。展会现场盛况能睿(UniEnergy)平
北极星碳管家网获悉,南网能源公告称,公司控股股东南方电网公司基于对南网能源长期投资价值的认可以及公司从综合能源向“综合能源+节能降碳”转型发展的信心,拟通过其全资子公司南网资本,自本公告披露之日起6个月内,以不限于集中竞价交易、大宗交易等深圳证券交易所允许的方式增持公司股份,增持金
北极星售电网获悉,近日,山西省生态环境厅等五部门发布了关于印发《山西省碳普惠公众参与机制建设工作方案》的通知,其中提到,建立健全碳普惠管理机制,制定碳普惠管理制度及配套规则,规范碳普惠运行模式和核算方法学,加强对碳普惠公众参与平台运营的指导和管理,加强对减排量交易及相关活动的监督
在全球能源转型的浪潮中,绿电直连正逐渐成为能源领域的热门话题。对于行业从业人员来说,深入理解绿电直连的内涵、参与主体、实施原因、实现方式以及成功案例,对于把握行业发展趋势、挖掘投资机会至关重要。本文带大家一起了解一下。(来源:微信公众号“能源电力公社”)01什么是绿电直连绿电,通常
“没想到现在充电这么快,只要半小时就能充满80%的电了,据说充的还都是绿电。”4月11日,在浙江次坞高速服务区,刚充完电的新能源车主张先生满脸欣喜。就在当日,浙江首个智慧零碳供能高速服务区——次坞高速服务区在经历3个月的试运行后正式投运,投运后预计每年可实现128万千瓦时绿电替代、减少碳排
北极星售电网获悉,4月10日,北京市发展和改革委员会发布进一步推动首都高质量发展取得新突破行动方案2025年工作要点。文件提出,深入推进能源协同发展,实现京津唐区域统一电力现货市场试运行。争取国家支持京津冀核心区铁路枢纽总图规划修编,加快首都地区铁路货运环线、铁路客运北环线项目前期方案
4月9日,华润电力重能新疆天山北麓新能源基地项目首台风电机组吊装成功,标志着项目建设取得阶段性突破。该基地项目是“疆电入渝”配套电源的重要组成部分,项目位于新疆哈密巴里坤县和伊吾县,总投资186亿元,总装机规模410万千瓦,其中风电280万千瓦、光伏120万千瓦、光热10万千瓦,配套建设6座220千
今年以来,中船科技全面落实集团公司“1178”总体工作要求,以公司“126433”工作推进体系为行动指南,全体干部职工以“起步提速、开局争先”的奋进姿态,铆足干劲、拼搏奋进,全力以赴抢抓资源开发和市场订单、谋划科研创新、推进生产交付等重点工作,以首季“开门红”为全年“满堂彩”奠定坚实基础。
本报讯4月2日,河北省碳计量中心(电力行业)成立,标志着河北省电力行业碳计量体系建设进入新阶段,将为河北省能源绿色低碳转型和“双碳”目标实现提供重要技术支撑。河北省碳计量中心(电力行业)是由河北省市场监督管理局批准,以国网河北省电力有限公司营销服务中心、国网冀北电力有限公司营销服务
北极星风力发电网获悉,近日,国能蒙电(杭锦旗)新能源有限公司蒙西区域火电灵活性改造消纳新能源项目风电部分及其配套接网工程先后取得鄂尔多斯市能源局核准批复。其中,风电项目总投资17.37亿元,规划总装机容量为400MW,共建设51台7.7MW容量风机和1台7.3MW容量的风机,配套建设220kV升压站一座,安
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!