环保行业垂直门户网站

新闻
  • 新闻
  • 产品
  • 企业
当前位置:环保 > 技术 > 正文

SCR脱硝系统喷氨优化调整试验

北极星环保网来源:发电技术 吴顺 等2019/10/30 8:52:58我要投稿
所属行业: 大气治理  关键词:SCR脱硝 喷氨优化 脱硝技术

1.2 测试内容和方法

SCR 脱硝装置的喷氨优化调整试验主要在机组常规高负荷(100%负荷)进行,并在高、中、低负荷(100%、75%、50%)下进行验证和微调。根据现场条件和测试要求,试验过程如下:

预备与摸底试验:在100%负荷下实测反应器进、出口 NOx浓度、氨逃逸等,分别与在线 CEMS 分析仪表的 DCS 显示值进行比较,为正式试验做准备。机组运行稳定,锅炉运行氧量、磨投运组合方式等情况下,减少脱硝装置入口NOx的波动。喷氨优化调整:在机组100%(负荷稳定)负荷下,根据SCR反应器出口截面的NOx浓度分布,对反应器入口水平烟道上的AIG 喷氨格栅的手动阀门开度进行调节,最大限度提高反应器出口的 NOx分布均匀性。

AIG 优化校核试验:在机组 100%、75%、50%负荷下,在设计脱硝效率下测量反应器进出口的NOx浓度分布和氨逃逸,评估优化结果,并根据结果对 AIG手动调阀进行微调。

在 SCR 反应器的进口和出口烟道截面,分别采用等截面网格法布置烟气取样点。在反应器平台布置一套TESTO350型烟气分析仪,烟气经不锈钢管引出至烟道外,再经过除尘、除湿、冷却等处理后,最后接入烟气分析仪进行分析。利用烟气分析仪,在反应器的进出口逐点切换采集烟气样品,分析烟气中的 NO 与 O2含量,可获得烟道截面的NOx浓度分布。取反应器进、出口的NOx浓度的算术平均值计算脱硝效率。根据反应器出口截面的NO浓度分布,每台反应器选取6个代表点作为NH3取样点。

1.3 摸底试验

根据测试,5、6号机组在负荷稳定时目前脱硝装置入口 NOx浓度在约 300 mg/m3左右,此入口 NOx浓度低于原设计的NOx。

5 号机组负荷 680 MW A、B、C、D、E、F 磨煤机投运,SCR 投入自动控制前提下,进行摸底测试,作为喷氨优化调整前基准工况。6 号机组负荷 620MW A、B、C、D、E、F 磨煤机投运,SCR 投入手动控制前提下,进行对比测试。

试验过程中,同步在每台反应器进、出口测量 NOx浓度,同时在反应器出口采集氨逃逸样品,用于计算脱硝效率与氨逃逸,初步评估脱硝装置的效率和氨喷射流量分配状况。

测试结果(表1)表明,喷氨优化调整试验前,5号炉脱硝装置A、B两侧脱硝效率分别为69.6%、87.2%,A、B 两侧烟道截面平均氨逃逸浓度分别为 1.7 μL/L、5.2 μL/L,A、B 侧单点最大氨逃逸分别为 2.4 μL/L、12.7 μL/L;6 号炉脱硝装置 A、B 两侧脱硝效率分别为 76.2%、84.7%,A、B 两侧烟道截面平均氨逃逸浓度分别为 1.2 μL/L、0.9 μL/L,A、B 侧单点最大氨逃逸分别为2.3 μL/L、1.6 μL/L。

表1 优化调整前的脱硝效率、氨逃逸分析

微信图片_20191030084932.jpg

对比 5 号机组脱硝反应器出口 NOx分布结果见图1、2。

摸底试验工况下 A、B 侧脱硝反应器入口 NOx分布相对偏差在 10%以内,说明入口 NOx分布相对较为均匀。A 侧喷氨量 65 kg/h,B 侧喷氨量 75.18kg/h。实测 A 侧入口 NOx浓度 263.8 mg/m3,B 侧入口 NOx浓度 274.5 mg/m3;DCS 显示 A 侧入口 NOx浓度 263.1 mg/m3,B 侧入口 NOx浓度 296.5 mg/m3。实测 A 侧出口 NOx浓度 80.3 mg/m3,NOx浓度最大值为134.0 mg/m3,最小值为 47.8 mg/m3。B 侧出口 NOx浓度35mg/m3,NOx浓度最大值为67.2 mg/m3,最小值为16.7 mg/m3;DCS显示A侧出口NOx浓度87.8 mg/m3,B侧出口NOx浓度68.3 mg/m3。图1 5号炉脱硝反应

微信图片_20191030084910.jpg

图1 5号炉脱硝反应器出口NOx分布图

微信图片_20191030084907.jpg

图2 5号炉摸底试验反应器出口测孔内NOx及氨逃逸分布

A 侧反应器出口截面 NOx浓度分布相对标准偏差为 27.0%,初步计算第一层催化剂入口 NH3/NO 摩尔比偏差为 8.2%;B 侧反应器出口截面 NOx浓度分布相对标准偏差为 39.0%,初步计算第一层催化剂入口NH3/NO 摩尔比偏差为 5.0% 。从图 2 可以看出,摸底试验表现出 A 侧靠近中心线位置处存在单点过大的情况,但整体 NOx浓度分布无明显规律。根据实测值与表盘氨气用量,B 侧由于喷氨量高于A 侧,导致 B 侧的氮氧化物较 A 侧低,且 B 侧由于喷氨不均,出现了氨逃逸超过 3 μL/L 的点,意味着 B侧空预器堵塞的风险较 A 侧高,烟风系统也显示 B侧空预器阻力高于 A 侧约 300 Pa,反映出现场实测数据无误。

延伸阅读:

SCR脱硝系统流场及喷氨优化

火电厂SCR脱硝系统喷氨优化调整及烟气取样方法改进

环保技术人员学习成长交流群
志同道合的小伙伴全在这里

投稿联系:0335-3030550  
邮箱:huanbaowang#bjxmail.com(请将#换成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

推荐阅读

MBBR工艺工作原理及应用特点
本文主要介绍了移动床生物膜工艺的的工作原理,探
火电厂脱硫废水零排放技术分析
国务院发布“水十条”以来,国家将强化对各类水污
几种垃圾焚烧炉排的介绍
众所周知,炉排系统是炉排式垃圾焚烧炉中最核心的
软化树脂知识点详细讲解
水处理树脂分为阳离子树脂和阴离子树脂,阳离子树
烟道设计培训资料
火力发电厂,烟道设计培训,从七个方面介绍了烟气
热词检索:ABCDEFGHIJKLMNOPQRSTUVWXYZ

关闭