北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水技术正文

高磷酸盐含氨的废水处理工艺研究

2017-06-09 16:46来源:中国污水处理工程网关键词:废水处理污水处理水处理收藏点赞

投稿

我要投稿

与前两者相比, 有人则得出较高的抑制结论.张锦耀等在研究磷酸盐对高基质厌氧氨氧化反应器脱氮性能的影响时表明, 磷酸盐的浓度在15~750mg˙L-1时反应器的脱氮性能并没有受到明显抑制, 磷酸盐浓度大于800mg˙L-1时, 反应器内的氮去除速率开始受到抑制.结论与本研究相距较大, 分析原因为, 其反应器脱氮效能、厌氧氨氧化污泥活性均处于较高的水平, 抗冲击力更强.并且其观察到磷酸盐在800mg˙L-1的浓度水平下出现了反应器脱氮效率的小范围上升, 这说明, 在高基质高负荷水平条件下, 厌氧氨氧化污泥具有更强的耐受力且在高磷酸盐浓度下可能被进一步驯化.而在其研究磷酸盐对CANON工艺的脱氮效能的影响时表明, 30 mg˙L-1的磷酸盐浓度对反应器具有一定的刺激作用, 磷酸盐浓度大于40 mg˙L-1反应器脱氮效能开始下降, 磷酸盐浓度达到100 mg˙L-1时, 反应器脱氮效能仅为原来的72%.此研究结论与本实验相近, 原因可能为CANON工艺的功能菌种与PN-ANAMMOX相近, 两种工艺参与亚硝化和厌氧氨氧化作用的主要功能菌均为Nitrosomonas属和Candidatus brocadia属.其在磷酸盐浓度为60~70 mg˙L-1时, 延长HRT, 氮去除速率有所提高, 这说明在此浓度的磷酸盐水平下, 厌氧氨氧化污泥能被进一步驯化, 这与本研究结论一致.

2.4 抑制前后厌氧氨氧化污泥性状分析2.4.1 抑制前后厌氧氨氧化污泥物理性状变化

如图 4(a)所示, 为接种前污泥形态, 整体呈红色, 表面圆润.由于取自PN-ANAMMOX反应器厌氧区污泥, 不可避免地带有部分亚硝化细菌, 故略有浅黄.随着磷酸盐浓度增加到100 mg˙L-1, 污泥活性受到抑制, 脱氮能力下降, 污泥形态也发生了变化.如图 4(b)所示, 受磷酸盐抑制后, 污泥发黄且质感偏硬.这可能与污泥吸附大量的磷酸盐或生成六水合磷酸铵镁(MAP)等化学沉淀有关, 并且可以观察到部分颗粒污泥裂解为絮状污泥, 表明受磷酸盐影响后厌氧氨氧化细菌胞外聚合物(EPS)减少. 

Zhang等在研究磷酸盐存在下厌氧氨氧化污泥的内源代谢模式表明, EPS可以减轻外部干扰的影响从而使细菌达到深度休眠状态.也有研究指出在有外部干扰下或者严重饥饿的条件下细菌会利用EPS作为碳源或者能源.而磷酸盐的吸附, MAP的生成, 均可以导致厌氧氨氧化污泥处于饥饿或外部干扰的状态.

2.4.2 抑制前后厌氧氨氧化菌丰度的变化

用ANAMMOX菌的Real-time PCR引物对AMX809F/AMX1066R扩增基因组DNA.根据标准曲线得到ANAMMOX菌的回归方程为:y=-3.644x+43.775, 相关系数R2为0.999, 说明建立的标准曲线具有良好的精确度.

如表 4所示抑制前后ANAMMOX菌细胞浓度分别为(9.97±0.86)×107、(8.26±0.54)×107 cells˙mL-1.可以看出, 磷酸盐影响前后ANAMMOX菌细胞浓度相差约1.71×107 cells˙mL-1, ANAMMOX菌的丰度有减少的趋势.

表 4 磷酸盐抑制前后ANAMMOX菌细胞浓度/cells˙mL-1

Strous等研究表明厌氧氨氧化活性的维持需在细胞浓度大于1010~1011 cells˙mL-1时才能显现出来, 而本研究所测得的ANAMMOX菌浓度仅在108 cells˙mL-1左右, 说明PN-ANAMMOX反应器厌氧区颗粒污泥中ANAMMOX菌的活性较高, 但所占比例不大.原因为接种污泥所在反应器具有很高的回流量, 好氧区的AOB进入了厌氧区, 从而附着在ANAMMOX细菌的表面.厌氧氨氧化反应的NH4+-N:NO2--N理论比值为1:1.32左右, 而本研究中出现了出水NO2--N比理论值略高的现象, 分析原因为实验进水中不可能完全去除溶解氧, 整个反应系统内存在着亚硝化反应, 一部分NH4+-N转化为NO2--N所致.

批次实验中出现了氮去除速率加速下降趋势.而短时间内, 接种的ANAMMOX菌的丰度、细菌的生理状态以及功能菌群的差异都不大, MAP的生成也十分有限.本研究批次实验后, 将厌氧氨氧化活性污泥用蒸馏水冲洗, 控制进水NH4+-N、NO2--N浓度不变, 不添加磷酸盐反应10 h, 氮去除速率均可以恢复到实验前的水平.故可以认为, 此种下降趋势是由于高浓度的磷酸盐吸附所致.长期实验中, 每提高一次磷酸盐浓度, 抑制现象就更为明显且所需恢复时间更长, 分析原因为长期过程中伴随磷酸盐的持续吸附及MAP的大量生成.国外有学者指出pH>8.0时才较易生成MAP, 由于在pH 8.0左右时, ANAMMOX细菌的活性最高, 为保证ANAMMOX最大活性, 本研究将反应器内pH控制在8.0左右, 此pH条件下相对较易生成MAP.长期实验中的氮去除速率恢复现象一方面可能是磷酸盐对ANAMMOX菌的驯化作用, 也可能是因为相对较低的浓度水平下, 磷酸盐对ANAMMOX菌的抑制有限, ANAMMOX菌生长, 丰度变高所致.

2.5 PN-ANAMMOX处理高磷酸盐含氨废水控制策略

磷酸盐是微生物生长的必需元素, 而磷酸盐含量过高则会对微生物产生抑制.由于pH>8.0时磷酸盐的加入会导致MAP生成, 王俊安等认为MAP的生成, 填充了ANAMMOX细菌颗粒污泥的空隙, 导致ANAMMOX菌基质缺乏, 从而影响了反应器的脱氮效能.而在鲍林林等研究中并未发现明显的白色晶体, 其分析原因为上升流生物膜反应器会将MAP冲刷下来.磷酸盐还可能被ANAMMOX细菌吸附影响氮素传递, 或者在厌氧条件下产生磷化氢, 其具有生物毒性, 从而导致脱氮效能变差. Zhang等研究表明, 磷酸盐对ANAMMOX颗粒污泥的影响还与细菌的生理状态有关.本实验受磷酸盐抑制后的厌氧氨氧化污泥的理化性状可以明显看出存在沉淀的生成; 短期实验中用蒸馏水冲洗污泥可以恢复其脱氮效能, 说明存在磷酸盐的吸附, 且可以看出活性越高的污泥得出的抑制结论越高.故磷酸盐对厌氧氨氧化污泥活性的影响是一个由于磷酸盐吸附, MAP等副产物的产生并与反应器类型、pH控制、细菌的生理状态有关的复杂过程.本研究接种的厌氧氨氧化污泥来自于PN-ANAMMOX反应器厌氧区, 实际应用中, 若想运用PN-ANAMMOX技术处理高磷酸盐含氨废水, ANAMMOX阶段宜采用上流式反应器且将反应器内pH控制在8.0以下, 以尽量减少MAP的生成; 考虑到在90mg˙L-1的磷酸盐浓度水平下厌氧氨氧化污泥可驯化性较差, 所需驯化时间较长, 建议将磷酸盐浓度控制在70mg˙L-1以下, 若进水磷酸盐过高则需前置除磷工艺.具体参见污水宝商城资料或http://www.dowater.com更多相关技术文档。

3 结论

(1) 批次实验表明, 磷酸盐浓度小于30 mg˙L-1时, 厌氧氨氧化污泥的脱氮效能没有受到明显的影响.随着进水磷酸盐浓度的升高, 氮去除速率呈加速下降趋势; 磷酸盐浓度大于200 mg˙L-1时, 厌氧氨氧化污泥活性达到稳定抑制状态.

(2) 采用Haldane抑制模型拟合磷酸盐抑制的动力学参数, 拟合所得的最大氮去除速率为502.5 g˙(m3˙d)-1, 半速率常数为2.4mg˙L-1, 半抑制常数为70.1 mg˙L-1.

(3) 长期实验表明, 磷酸盐浓度小于50 mg˙L-1时, 对厌氧氨氧化污泥脱氮效能的影响不大; 磷酸盐浓度在70~90 mg˙L-1时, 厌氧氨氧化污泥活性开始受到明显影响, 经过一段时间均可有所恢复; 磷酸盐浓度越高, 恢复所需时间越长; 磷酸盐浓度达到100 mg˙L-1时厌氧氨氧化污泥的脱氮效能受到严重抑制, 氮去除速率由158.33 g˙(m3˙d)-1下降至60.17 g˙(m3˙d)-1左右, 抑制约62%.

(4) 抑制前后的厌氧氨氧化污泥中的ANAMMOX菌的Real-time PCR测定结果表明, 抑制后的污泥体系中ANAMMOX菌细胞浓度由(9.97±0.86)×107 cells˙mL-1下降至(8.26±0.54)×107 cells˙mL-1, 丰度有相对减少的趋势.

原标题:高磷酸盐含氨废水处理工艺研究
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

废水处理查看更多>污水处理查看更多>水处理查看更多>