北极星

搜索历史清空

  • 水处理
您的位置:环保水处理黑臭水体技术正文

深思:探讨水体黑臭和内源磷污染发生机制

2018-07-23 10:31来源:环境科学报作者:荣楠关键词:黑臭水体底泥内源污染内源磷污染收藏点赞

投稿

我要投稿

1 引言(Introduction)

随着近年来对外源控制力度的加大,底泥内源污染对水体污染的贡献比例在逐步加大.对沉积物磷污染的研究发现,Fe和S是影响P在沉积物中的活性及其向水体迁移的两个关键因子,P、Fe、S在水-沉积物界面微小尺度上存在着密切的耦合关系.铁结合态磷在缺氧和还原条件下发生溶解,高价态的Fe被还原成低价态Fe2+并进一步被S结合形成FeS,造成孔隙水中P含量升高,并通过界面扩散向上覆水体释放,是内源磷污染发生的主要机制(Rozan  et al., 2002;Søndergaard et al., 2003).此过程中形成的FeS是主要的致黑物质(Canfield et al.,  1984;应太林等,1997),P的释放不仅使水体发生二次污染(高丽等,2004),还会导致藻类过量繁殖,这些藻类死亡后分解并快速消耗大量氧气,又会导致季节性水体黑臭现象(Schelske,2009).由此推测,在极度缺氧和强还原性的黑臭底泥中,这种耦合关系可能更加明显.因此,对P、Fe、S在沉积物界面耦合关系的研究,将有助于深入探讨水体黑臭和内源磷污染发生机制.准确获取P、Fe、S在水-沉积物界面的精细空间分布信息则是研究三者耦合关系的重要前提.

尽管目前普遍认为P、Fe、S之间存在耦合关系,但大部分研究并未提供直接的原位证据,采样技术是制约其发展的瓶颈.传统的剖面分析方法是直接采集沉积物柱芯,再通过离心、压榨、化学提取等方法获得孔隙水(刘素美等,1999).这种既非原位又非被动的缺陷,不仅破坏了沉积物原本的物理化学结构,且易导致样品脱离沉积环境后发生变化,同时受空间分辨率低(厘米级)的限制,使研究结果产生较大误差.因此,主动采样方法已不能满足研究需要,必须发展非破坏性的高分辨被动采样技术,在微尺度上揭示P、Fe、S之间的耦合关系.

薄膜梯度扩散技术(Diffusive Gradients in Thin  Films,DGT)是一种原位被动采样技术,该技术以目标物的自由扩散为基本原理,可在不破坏沉积环境的条件下收集样品信息,且空间分辨率显著提高到毫米/亚毫米级,避免了主动采样存在的分析误差较大等缺点.目前DGT技术已被广泛应用于水体、沉积物、水-沉积物界面和土壤中P、Fe、S等离子的含量测定(Ding  et al., 2012;Ding et al., 2016;Motelica-Heino et al., 2003;Widerlund et al.,  2007).近年来,Han等(2015)发展了ZrO-AgI复合DGT技术,结合Chelex  DGT能实现P、Fe、S的同步获取,避免了由于不同步造成的空间错位,并且其测定容量比传统型Fe-oxide  DGT高50倍以上,更适合应用于高污染的底泥中.

DGT技术可满足微界面研究的需要,但将其应用于复杂黑臭水体的研究却鲜有报道.而在住建部通报的城市黑臭水体清单中,广东省占244个,数量居全国首位,黑臭问题尤为严重,已经严重影响珠三角地区的社会经济发展.基于此,本文以东莞市典型黑臭水体为研究对象,利用DGT技术获取沉积物中P、Fe、S的含量分布信息,并分析该技术在黑臭底泥中的适用性.同时,依据P、Fe、S在水-沉积物界面的高分辨浓度分布,计算三者在沉积物界面的扩散通量.研究结果可为深入认识黑臭成因与内源磷污染发生机制提供依据.

2 材料与方法(Materials and methods)

2.1 DGT原理

DGT技术主要基于Fick第一扩散定律,通过在定义扩散层的梯度扩散及其关联过程研究,获得目标离子在土壤、水体和沉积物等环境介质中的扩散通量、(生物)有效态含量和固-液交换动力学的信息(Davison  et al., 1994;Zhang et al.,  2014).假设DGT在放置时间内扩散梯度保持不变,则介质中特定离子浓度可由扩散定律转化公式算出.DGT对通过扩散相的物质形态具有选择性,它只能测定那些能够通过扩散层并被结合相累积的可溶性形态,即DGT有效态.DGT的富集过程可以模拟目标离子在环境中的迁移和生物吸收过程,分析结果相比传统有效态测定方法更加科学可靠.

2.2 主要仪器和试剂

仪器:沉积物柱状采样器(天津苇杭环境科技有限公司,型号:WH-2014A),多参数水质分析仪(YSI  556),硫离子选择电极(Thermo,USA),紫外-可见分光光度计(HACH公司,型号:DR2800),恒温振荡器(MSK,合肥艾本森科学仪器有限公司),扫描仪(佳能,型号:5600F),微孔板分光光度计(Bio  Tek,USA),微量移液排枪(Eppendorf公司).ZrO-AgI DGT和Chelex  DGT及固定膜切片所需要的陶瓷排刀等材料均购置于南京智感环境科技有限公司.

试剂:钼酸铵,酒石酸锑钾,抗坏血酸,浓硫酸,邻菲啰啉,盐酸羟胺,硫酸亚铁铵,乙酸铵,冰乙酸,EDTA等.

2.3 采样及装置投放

选择珠三角地区东莞市典型黑臭河流穗丰年河和鞋底沙河,共设置4个采样点(图  1).现场测定上覆水的溶解氧(DO)、pH、氧化还原电位(ORP)、透明度,水样用水样采集器采集,带回实验室后分析总磷和氨氮的含量.表层沉积物用抓泥斗抓取表层20  cm的沉积物样品,代表相对缓流的河流沉积物主要的生物活性层(Hickey,1988).沉积物样品放置在自封袋中密封保存,防止样品接触空气氧化与水分蒸发.用自重力采样器在各个样点采集沉积物柱状样,样品采集后冷藏保存并尽快运回实验室分析.

图 1采样点分布图

将ZrO-AgI DGT和Chelex DGT背靠背对齐固定后,投放于各个柱状样中,保留装置在沉积物-水界面上2~4  cm,记录投放时间,测定水温,平衡24  h后回收DGT.取出DGT后标记沉积物-水界面位置,迅速用去离子水冲洗DGT表面的沉积物,防止沉积物再次扩散.随后将DGT装置装入自封袋中,滴入几滴去离子水,在湿润环境中密封保存,待分析.

2.4 DGT样品分析测定

取出Chelex DGT固定膜后,按2 mm切片,切片后的所有条状固定膜依次放到1.5 mL离心管中,加入0.4 mL 1.0 mol ˙ L-1 HNO3,室温静置提取16  h以上,取出固定膜,保存提取液待测定.提取液中的Fe(Ⅱ)采用邻菲罗啉比色法测定(Stookey,1970),微量样品采用96微孔板分光光度计法.

对ZrO-AgI DGT固定膜上S(Ⅱ)的分析采用电脑密度成像计量(CID)技术(Ding et al.,  2012),P的分析采用切片、提取的方法.取出ZrO-AgI DGT固定膜后,放置于扫描仪上(沉淀面朝下)扫描膜的正面,利用Image  J软件将扫描获得的图像转成灰度,利用校正曲线将灰度转换成积累量.扫描后的固定膜按2 mm切片,每个长条加入0.4 mL 1.0 mol ˙  L-1的NaOH提取24 h.提取液中的P采用磷钼蓝比色法测定(Murphy et al., 1962),微量样品采用96微孔板分光光度计法.

2.5 沉积物理化性质分析.

测定每个表层沉积物样品的ORP、有机质、含水率、NaOH-P、Fe(Ⅱ)和AVS.ORP采用便携式水质分析仪(YSI  556)的ORP电极测定.有机质采用烧失量法测定,结果以沉积物干重含量百分比表示.含水率测定方法为计算沉积物湿样在105 ℃烘干6  h后的损失量,用于计算沉积物的干重.NaOH-P采用1.0 mol ˙ L-1 NaOH提取,钼锑抗法测定(张文强等,2016).Fe(Ⅱ)采用50 mL 1  mol ˙ L-1 HCl提取,菲啰嗪法测定.AVS采用冷扩散吸收和离子选择电极法测定(Hsieh et al., 1989).

2.6 数据处理

有效态P、Fe与S的浓度由式(1)计算获得.

(1)

式中,M为固定膜上P、Fe或S的积累量(μg), Δg为扩散层厚度(cm),Dg为磷酸根、Fe2+或HS-在扩散膜中的扩散速率(cm2 ˙ s-1),  A为每一个条状膜的面积(cm2),t为扩散时间(s),cDGT是放置时间内通过DGT扩散得到的平均浓度(mg ˙ L-1).

固定膜中目标离子积累量(M)一般采用溶剂提取的方法,根据式(2)计算得到.

(2)

式中,ce为提取液浓度,Ve为提取剂体积,Vg为固定膜体积,fe为提取剂对固定膜上目标离子的提取率(Zhang et al., 1995).

有效态离子在界面的扩散通量根据界面附近的浓度梯度分布进行计算,公式如下:

(3)

式中,JW为有效态离子从沉积物界面到上覆水的扩散通量(μg ˙ m-2 ˙ d-1),JS为从沉积物到界面的扩散通量(μg ˙ m-2 ˙  d-1),J为沉积物中有效态离子与上覆水的交换通量(μg ˙ m-2 ˙  d-1).J值为正值,表明有效态离子由沉积物向上覆水释放,反之则表明上覆水有效态离子被沉积物吸附.采用界面以下5 mm、界面以上5  mm的范围进行线性拟合,所有剖面拟合结果均达到显著性水平.(δcDGT)/(δxW) (x=0)和(δcDGT)/(δxS)  (x=0)分别是上覆水和沉积物有效态离子在单位距离的浓度梯度变化,DW、DS分别是有效态离子在上覆水和沉积物中的扩散系数(m2 ˙ s-1),  DS由上覆水的扩散系数DW计算得出.φ为沉积物孔隙度,其计算方法见下式:

(4)

式中,WW为沉积物鲜重(g);Wd为沉积物干重(g);ρ为表层沉积物平均密度与水密度比值,一般取2.5(古小治等,2010).

原标题:探讨水体黑臭和内源磷污染发生机制
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

黑臭水体查看更多>底泥内源污染查看更多>内源磷污染查看更多>