登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:现如今,我国是经济快速发展的新时期,活性氯的添加可以有效缓解反渗透膜生物污染的问题,但是也会破坏膜的分离层结构,造成膜选择透过性能的急剧变化。研制耐氯性能良好的芳香聚酰胺反渗透膜能简化预处理和清洗工艺,延长膜使用寿命,降低膜系统运行成本。此外,对氯化降解的反渗透膜进行修复,能恢复膜的分离性能,延长膜使用寿命,同时也能减少废弃反渗透膜对环境的污染。综述了反渗透膜耐氯性能以及氯化修复两方面的研究进展。首先,简要介绍芳香聚酰胺反渗透膜的氯化降解机理及氯化引起的性能变化。其次,从物理保护、纳米材料改性、苯环修饰、酰胺键修饰以及联合多重机制等多方面介绍了目前耐氯反渗透膜的研制手段及方法。再者,简要介绍了几种膜性能修复试剂及其应用。最后,对耐氯膜制备和膜氯化修复的研究方向和发展前景进行了总结与展望。
关键词:芳香聚酰胺;反渗透膜;耐氯性能;修复;研究进展
引言
反渗透膜分离技术以其低成本、高净化率等优点,被广泛应用于水处理与工艺处理等领域,目前已成为海水和苦咸水淡化、污水处理、中水回用、纯净水制备等方面最为有效和经济的方法之一。上世纪60年代初,Loeb和Sourirajan以醋酸纤维素为原材料,制备出世界上第一张具有高通量、高截留率的不对称反渗透膜,成为膜技术发展史上的里程碑。至此以后,反渗透膜技术各个层面均得到巨大发展。与醋酸纤维素类反渗透膜相比,聚酰胺类薄层复合膜(TMC)具有高脱盐率、高通量以及较低的操作压力等优势。1987年,陶氏FilmTec公司发明了聚酰胺反渗透膜后,它很快取代了醋酸纤维素类反渗透膜,在全球的反渗透和纳滤膜生产及应用领域中占据主导地位,使膜技术及其应用得到了空前的发展。但是,聚酰胺类反渗透膜较差的抗氧化性、耐污染和耐氯性能,仍然制约着它的发展和应用。在反渗透设备工艺前端,一般会用氯气或者漂白粉对进水进行杀菌消毒,以达到清洁水源和减小膜生物污染的效果。但它不可避免地引入了活性氯(指氯气、次氯酸根等具有氧化性的氯元素)。活性氯会对聚酰胺膜结构产生较大破坏,使膜性能迅速下降,寿命缩减。因此,在实际应用中,反渗透设备的进水在消毒后还需要进行脱氯处理,以达到进水中余氯含量小于0.1ppm的要求,这类操作明显增加了运行成本。如果开发出具有耐氯效果的聚酰胺反渗透膜,则能相应的减少操作复杂性,降低操作成本,使其应用更加广泛。本文将对反渗透、纳滤膜的耐氯改性方面的工作进行综述,归纳并分析其优缺点,以期能为相关的研究提供些许帮助。
1芳香聚酰胺膜的氯化降解
芳香聚酰胺经活性氯处理后发生聚酰胺的氯化,导致选择透过性能的变化。一般认为,芳香聚酰胺膜的氯化包括酰胺键的氯化以及芳香环的氯化,而后者往往有两种可能的途径:(1)通过亲电取代发生芳香环的直接氯化;(2)通过Orton重排发生芳香环的氯取代,即酰胺上N—H键首先发生氯化生成N—Cl键,在酸存在条件下N—Cl脱氯变成N—H和Cl2,然后Cl2迅速与芳香环发生亲电取代。此外,也有研究者指出,在芳香聚酰胺氯化过程中,还存在着酰胺键氯取代和酰胺键水解之间的竞争关系。.
2耐氯芳香聚酰胺反渗透膜研究进展
2.1聚酯类薄层复合膜
为了提高聚酰胺的耐氯性能,一些醇类、酚类单体也被考察。Jayarani对聚酰胺、聚酯、聚酯胺类反渗透膜的耐氯性进行了比较,结果显示,聚酯类的耐氯性能最强,聚酯胺与聚酰胺的耐氯性能差别较大,不同二胺的聚酰胺膜耐氯性能也有所不同,顺序为间位二胺<对位二胺<邻位二胺。由于聚酯类没有N—H键,而邻位的基团增加了活性氯进攻的位阻,所以耐氯性能有所提高。
他们对聚酯进行了进一步研究,结果表明对于同一类酚,聚合时单体上羟基越多(即产生酯键越多)耐氯性越强;芳环上羟基数量相同时,单体结构稳定则有利于得到耐氯性能强、结构稳定、除盐率高的反渗透膜。
2.2反渗透膜元件的卷制
利用卷膜机、切割机和外绕机,将未改性膜片和最优条件下制得的改性膜片卷制成2514型卷式海水膜元件。首先,将膜片、产水布和进水格网裁剪成预定尺寸。两片膜片正面相背,膜片中间放置产水布,表面放置进水格网,膜片三边用胶黏剂密封,组成一叶膜袋。接着,取四叶膜袋,将膜袋的开口边与产水收集管相连,以产水收集管为轴,用卷膜机将其初步卷制成合适尺寸的膜卷。然后,用切边机进行切边处理,将膜卷切割成适合2514型元件卷制的尺寸。最后,加装膜元件封端,使用外绕机将玻璃纤维和环氧树脂外绕到膜卷表面,经旋转固化,形成具有一定强度的卷式海水膜元件.试验过程中共卷制未改性膜元件20支,改性膜元件60支。
2.3酰胺键修饰
芳香聚酰胺膜的氯化包括酰胺键的氯化以及芳香环的氯化,一般认为,酰胺键的活性比芳香环高,优先被氯取代。因此,酰胺键修饰的改性方法相比苯环修饰,膜的耐氯性能更好.对聚酰胺膜交联处理以及在酰胺键上引入保护基团是最常见的酰胺键修饰改性方法。芳香聚酰胺包括交联(n)和线性(m)两部分。芳香聚酰胺的交联程度会影响膜的性能与结构。对芳香聚酰胺膜进一步交联,能去除酰胺键上的活泼氢原子,从而减少氯结合位点,提高耐氯性能.用3种含柔性脂肪链的交联剂对商品反渗透膜进行后处理交联。其中,六亚甲基二异氰酸酯(HDI)能与芳香聚酰胺的端胺基和酰胺键上的N—H反应,耐氯性能最佳.用甲醛与戊二醛交联改性膜,经10 000mg•h/L活性氯(pH=4和10)处理,通量基本不变.在酰胺键上引入的保护基团主要分为两种.一种是直接保护基团,通过空间位阻效应,降低了聚酰胺的反应活性.使用N,N′-二甲基间苯二胺(DMMPD)与5-氯甲酰氧基-异肽酰氯(CFIC)制备反渗透膜,经10 000mg•h/L的活性氯(pH=8.0)处理,通量与截留率几乎没有变化.另一种是牺牲型保护基团,能优先与活性氯反应,从而保证了聚酰胺结构的稳定。此外,氯化后的膜,经过适当的处理(如碱或亚硫酸钠),能够实现选择透过性能、耐氯杀菌性能的再生。
2.4膜制备工艺的改良
在膜的耐氯改性研究过程中发现,一些特殊的处理工艺也能使其耐氯性能有所提高。研究了热处理条件对反渗透膜耐氯性的影响。实验中以聚砜超滤膜为基膜,N,N-二甲基间苯二胺与均苯三甲酰氯(TMC)和间苯二甲酰氯(IPC)为单体,通过界面聚合制备反渗透膜。对制得的反渗透膜在不同的热处理温度、时间等条件下处理后进行性能测试。结果显示,在同时实现高通量和高截留的最佳热处理温度条件下,膜的耐氯性能也是最好的。
结语
总之,正是因为芳香聚酰胺反渗透膜的氯化降解、耐氯性能和氯化修复的研究能极大的提高膜性能,延长膜使用寿命,进一步推动反渗透膜的发展与应用,因此成为研究热点与重点.然而,受现有认识水平的制约,氯化修复的机理还停留在较浅的层面,同时研究者对氯化降解机理和耐氯膜制备原理的观点也不完全一致,这些也将持续成为研究难点。未来人们将继续从实验、模拟和表征方面加深对氯化降解、耐氯性能和氯化修复的认识,在此基础上,借鉴生物和材料领域的研究成果,尝试新的制膜材料、方法和工艺,不仅要制备高耐氯性能的膜,还要使膜兼具高选择透过性能和杀菌性能,更要完善氯化修复的机理,丰富其应用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
时间:2025年8月8-10日地点:广州·中国进出口商品交易会展馆主办单位广东省粤港澳经贸合作交流促进会广东鸿威国际会展集团有限公司承办单位武汉鸿威国博会展有限公司【展览范围】1、污水/废水处理:水务、污水处理成套设备、气浮、拦污设备、过滤沉淀设备、蒸发器、结晶器、消毒杀菌、过滤器材、曝气
北极星水处理网获悉,7月11日,中国石化发布中天合创能源有限责任公司中天合创水务部废水、高含盐、矿井水高压反渗透框架招标反渗透膜招标公告。公告如下:(重招)2024-2026中天合创水务部废水、高含盐、矿井水高压反渗透框架招标采购招标公告1.招标条件本招标项目(重招)2024-2026中天合创水务部废
水是人类赖以生存的基础。随着人口增长,工业规模扩大,人类社会对水资源的需求也在不断提高。中国年消耗淡水超过6000亿立方米,是全世界用水量最多的国家;而我国人均水资源量只有世界平均水平的四分之一,水资源严重短缺。加强污水处理能力,提高污水回收利用率不仅是环保需求,更能有效缓解水资源短
进入“十四五”,中国的产业发展虽增速放缓,但就其发展阶段而言,仍处在快速发展阶段。中国是工业大国,同时也是工业强国,在持续推进工业化的进程中,需要消耗大量水资源。根据水利部公布的最新数据显示,2023年中国国内生产总值增长近一倍,用水总量稳定在6100亿立方米以内。面对如此庞大的用水量,
近期,金科环境凭借其领先的水处理技术和丰富的国家级水处理项目经验,成功中标江苏常州江边五期及污水资源化利用工程的厂区污水处理超滤反渗透系统、河南洛阳关林水厂提标改造纳滤膜系统,这一双重成就既展现了业主对公司的高度信任,也充分彰显了金科环境在水处理领域的卓越实力。常州市江边五期及污
1月4日,常州市江边五期及污水资源化利用工程——厂区污水处理工程——超滤及反渗透膜车间所需配套设备及相关服务公布中标结果,中标单位为金科环境股份有限公司,中标价7098万元。本次招标采购内容是常州市江边五期及污水资源化利用工程-厂区污水处理工程-超滤及反渗透膜车间所需配套设备及相关服务。
今年1月,世界气象组织(WMO)发布了首份《全球水资源状况》报告,报告直击全球水资源紧缺问题。目前,36亿人每年至少有一个月面临用水不足的问题,预计到2050年这一数字将增加到50亿以上。面临如此缺水的局面,生活用水、工业用水将如何得到有效保障?对此,科学家将目光聚焦海水淡化技术的研发与创新
LG化学荣幸地邀请您参加2023年第15届上海国际水展。这是水处理行业内最大型的展览会,它聚焦市政水处理、工业水处理、水环境综合治理、膜与水处理、净水等热点板块,展示水处理产业链领域最新技术和科研成果。作为全球优秀的海水淡化反渗透膜供应商,LG化学引领了行业的创新与发展。LG化学以最先进的产
膜技术较传统污水处理技术在出水水质、占地面积、污泥产量等方面具有较强的优势,以反渗透膜为主的膜技术得到了许多国家的高度重视,在近几年得到了快速的发展和更广泛的应用。值此2023年第24届环博会之际,众多膜产品供应商携最新技术产品精彩亮相,全球海水淡化反渗透膜领域第一品牌LG化学也带着其具
作为一家肩负社会责任的企业,LG,始终以涵盖客户、环境和社会价值的可持续发展愿景为基础,在经营活动中追求可持续创新。值此届环博会到来之际,LG化学水处理事业部将带来最新的产品和技术。基于创新的薄膜纳米复合技术(TFN),LG化学生产制造全系列NanoH2O海水和苦咸水反渗透(RO)膜,期间不断发展,
记者近日从渤海新区管委会获悉,到目前为止,当地已有83家企业用上了海水淡化水。
近期,全球电动汽车和储能市场的快速增长推动了锂电池行业的进一步发展。在此背景下,锂电池隔膜作为提升电池性能的关键,其技术创新备受瞩目。以星源材质推出的超快充纳米纤维复合隔膜为例,这一新型隔膜在热稳定性、机械强度、循环寿命和能量密度方面的显著提升,引起了业界的广泛关注。回顾历史,隔
近日,中信环境技术成功中标嘉兴联合污水处理厂一期改造工程项目。中信环境技术旗下美能膜再次成为该项目MBR膜系统供应商,旗下广州公司、四川中喻公司负责实施。本次改造将有效提升污水厂处理能力,有助于改善当地水环境质量和生态环境,具有显著的环境效益和社会效益。嘉兴联合污水厂是浙江省第三大
2025年5月20-22日塔什干新国际会展中心(ANHOR)主办单位:乌兹别克斯坦工商会乌兹别克斯坦出口商协会乌兹别克斯坦中国企业商会承办单位:中亚五国水博览会组委会北京中威国际展览有限公司展会简介:水,是生命的摇篮,是文明的源泉,更是连接世界的纽带。在中亚这片古老而神秘的土地上,乌兹别克斯坦宛
近日,开创环保成功中标浙江浦江县第四污水处理厂扩容改造项目,在原有设备和构筑物的基础上进行升级改造扩容。浦江县第四污水处理厂扩容改造项目,在现状4.5万m/d基础上新增1万m/d污水处理系统,形成5.5万m/d的污水处理规模。本项目在原有设备和构筑物上进行不停水改造,利用原有的粗格栅-提升泵房、
优选创新企业,精选环保展品高效推动华北水业绿色发展卡点10月黄金档期,北京水展又要与全体水处理人见面啦!10月9-11日,2024北京水展将围绕“优选、精选、高效”的标签,汇聚600+优质展商、22000+专业观众、50+行业权威专家,将在北京|国家会议中心迎来一年一度的华北水处理盛会。在过去的一年里,北
抗生素是目前国际上广泛关注的四类新污染物之一。抗生素污染了水,应该用什么方法来治理?我们认为,目前膜法处理是一种比较好的处理抗生素污染水的技术。”5月17日,在第18届POPs论坛上,中国工程院院士、国家新污染物治理专家委员会副主任侯立安在“新膜处理抗生素污染水卡脖子技术难题及对策”主题
湖南某15MW光伏车棚电站项目建设在汽车物流园内,车辆中转过程产生的大量尾气、灰尘等各种污染物不断附着在组件表面上,形成了一层难以清洗的顽固性油污污垢。由于组件最高点离地超过五米且安装倾角大、清洗施工难度高、清洗作业所需挪车费用贵等一系列问题,导致电站建成后一直无法清洗!不仅造成发电
为贯彻党的二十大精神,持续加强在党建工作质量、人才队伍培养、基础体系管理等方面的交流,实现增进沟通、资源共享、共同提升,11月1日,中信环境技术在广州总部与宝武水务举行党支部共建仪式,并就业务领域合作进行深入洽谈。中信环境党委委员、中信环境技术董事长孙磊,中信环境技术总裁谭虎传,宝
近日,北京碧水源科技股份有限公司/北京久安建设投资集团有限公司/苏邑设计集团有限公司联合体中标安徽省宿州市砀山县经济开发区工业污水处理厂(二期)工程PPP项目。碧水源新研发的振动膜生物反应器(V-MBR)技术将应用于该项目,处理后的出水部分指标可达到地表水IV类标准,对保护当地流域的水环境将
2022年8月10日,华中科技大学微纳中心陈蓉教授团队与苏州晟成光伏设备有限公司在苏州签订技术战略合作协议。双方本着“长期合作,互利共赢,强有力联合发展”的原则,在光伏原子镀膜技术合作上建立长期深层次的全面战略伙伴关系,进行光伏原子镀膜技术开发,将新型镀膜技术应用至光伏市场,共同推进光
导言:是时候让海水淡化起航了吗?AquatechOnline(水技术在线)着眼于可实施的移动式核动力海水淡化厂如何增加现有的供水。核能解决方案想象一下,有一天你去海滩上眺望地平线。你看到了什么?也许是游泳者、冲浪者和航行的船只。现在想象一下集装箱船。不是普通的集装箱船,而是将海水转换成可饮用淡
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!