登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
随着国家对水泥行业环保要求越来越严,NOx的减排工作成为水泥企业的首要任务之一。河北省《水泥工业大气污染物排放标准》DB12/2167—2015规定NOx排放最大不超过260 mg/Nm3;北京市《水泥工业大气污染物排放标准》标准规定NOx排放最大不超过200 mg/Nm3;河南省在《河南省2018年大气污染防治攻坚实施方案》中要求水泥行业2018年10月底前,实现NOx排放最大不超过150 mg/Nm3;江苏省已经提出在2019年6月实现NOx最高排放不超过100 mg/ Nm3的目标。由此可见,氮氧化物的排放标准越来越严,这就要求企业必须切实行动起来,未雨绸缪,做好技术探索和储备,以满足和适应更严的标准。
目前国内水泥窑脱硝技术可归纳为:燃烧前治理技术、燃烧中治理技术和燃烧后治理技术,当前被普遍采用和认可的技术多以稳定入窑生料和稳定窑况为前提,分级燃烧技术+SNCR脱硝技术相结合的形式。
华北是全国大气污染最严重的区域之一,对水泥企业的氮氧化物排放也最严格。本研究选择了华北区域内氮氧化物排放水平较低的7条水泥生产线,并对其进行测试和分析,探讨CO浓度、炉型、喷枪位置等因素对脱硝效率的影响。
1 生产线基本情况介绍
7条水泥生产线的基本情况见表1。
表1 7条水泥生产线基本情况
2 测试方法
采用德国testo350便携式烟气分析仪对窑尾不同位置的烟气成分进行测试,并与在线烟气分析仪监测数据进行了比对。测试烟室和分解炉的高温烟气成分时,采用自制的耐高温前置过滤取气装置,可耐1 300 ℃以上高温。
测试的位置以五级单列旋流喷腾炉为例,烟室部位、分解炉出口、五级旋风筒出口或四级旋风筒出口、窑尾烟囱等,对带有预燃室和流化床炉的生产线还测试了预燃室和流化床炉的出口烟气成分。旋流喷腾炉烟气成分测试位置示意见图1。
图1 旋流喷腾炉烟气成分测试位置示意
煤粉的工业分析和元素分析参考GB/T 212—2008《煤的工业分析方法》和GB/T 31391—2015《煤的元素分析》。
3 测试结果
通过对7条水泥生产线的窑尾各部位烟气成分进行测试,结果见表2。测试结果表明,7条生产线中窑尾烟囱氮氧化物排放浓度均低于160 mg/Nm3,其中3条生产线窑尾烟囱氮氧化物排放浓度低于100 mg/Nm3,远远低于目前国家标准的要求。
表2 预热器各部位管道中烟气的NOx排放浓度mg/Nm3
注:计算氮氧化物的排放浓度按照国标GB 4915—2013,基准含氧量为10%。
4 分析与讨论
4.1 CO浓度对NOx排放浓度的影响
回转窑会产生热力型NOx和燃料型NOx,其中以热力型NOx为主。温度和气氛是影响回转窑内NOx浓度的两个最重要因素,根据捷里道维奇机理描述,当温度低于1 500 ℃时,热力型NOx的生成量很少;高于1 500 ℃时,温度每升高100 ℃,热力型NOx的生成速度将增大6~7倍。所以在保证熟料良好煅烧的前提下要适当控制窑内温度,避免局部超高温产生大量NOx。
表3是D生产线窑尾烟室气体成分测试结果,可以看出当窑尾烟室O2浓度越高(过剩空气系数大)时,CO浓度越低,烟气中NOx浓度越高;反之,CO浓度越高,烟气中NOx浓度越低。窑尾烟室CO浓度高可有效抑制和还原NOx,主反应式为:
2CO+ 2NO → 2CO2 + N2(1)
表3 D生产线不同时间测试烟室气体成分结果
由于测试位置在烟室中上部,测试结果并不一定能准确和真实反应窑内气氛情况,其他因素亦可能影响测试结果,如窑尾的密闭性、热生料中含有未燃尽煤粉、烟室缩口物料沉降掉入烟室等,都可能导致测试结果的误差。但通过测试数据得到的以上规律是值得参考的。如果想进一步准确掌握窑内真实的气氛情况,建议安装在线烟气分析仪,并通过长期观察以总结相关规律。
此外,窑内的还原气氛会增加SO2的挥发,可能造成系统结皮或SO2排放超标。为了避免SO2过量挥发,窑内燃烧必须保证氧化气氛,这也是熟料煅烧的基本要求。同时降低NOx和SO2浓度是一对矛盾体,在实际生产和操作过程中,为了控制窑内气氛,首先应根据所使用的燃料类型,结合生料中的硫、碱含量等,应选择良好的、易于调整的燃烧器;其次保持窑内微氧化气氛,窑尾过量O2建议控制在0.8%~2%,以防止结皮、结圈的形成,从而确保熟料的质量;最后,生料必须易于煅烧,从而使煅烧温度尽可能地低。
4.2 炉型对氮氧化物排放浓度的影响
分解炉的型式有多种,以旋流喷腾炉、旁置预燃室炉和流化床炉三种炉型为研究对象,A和D生产线分别为典型的旁置预燃室炉和流化床炉型,重点对预燃室出口和流化床炉出口的烟气成分进行了测试,结果见表4。三种不同型式分解炉如图2所示。
表4 A和D生产线预燃室或流化床炉出口烟气成分图2 三种不同系列的分解炉
图2 三种不同系列的分解炉
煤粉在预燃室或流化床炉中燃烧,测试出口的CO浓度一度超过10 000 ppm,说明煤粉发生不完全燃烧,而不完全燃烧的焦炭和CO能够有效抑制和还原NOx;同时预燃室或流化床炉出口的NOx浓度均不高于600 mg/Nm3,与旋流喷腾炉中部烟气成分相比较低。预燃室或流化床炉产生的烟气连同未燃尽的煤粉(大量不完全燃烧),通过烟气连接管道送入窑尾烟室之上的分解炉内,与窑的烟气汇合,在上升过程中对NOx有持续的还原作用。因此单从NOx减排角度来看,旁置预燃室炉和流化床炉型均有利于还原窑尾烟气中的NOx。
4.3 喷枪位置对SNCR脱硝效率的影响
表5为不同生产线喷氨位置。喷氨位置是影响SNCR脱硝效率的重要因素之一。普遍认为氨与NOx反应(脱硝)的温度窗口以850~1 000 ℃为宜,所以在SNCR系统设计之初,喷氨位置大多选择安装在分解炉主炉出口,但实际生产过程中,由于分解炉主炉出口的烟气含有一定浓度CO,尤其是进行了分级燃烧技术改造后的生产线烟气中CO浓度可能会更高,850~1 000 ℃并不一定是其最佳的脱硝反应温度。国内外很多研究[1-4]已表明,CO的浓度会影响SNCR脱硝的最佳温度,随着烟气中CO含量升高,最佳的脱硝温度会向低温方向漂移。吕洪坤[1]等人研究了在氨氮摩尔比为1.5、氧含量为4%的条件下,最佳脱硝温度降低至800 ℃以下,降低幅度达150 ℃左右,同时脱硝的温度范围变窄,最高脱硝效率降低至42%左右。王林伟[5]等人研究了氨氮摩尔比为1.5时,当添加CO后最佳脱硝温度约降低75 ℃,在800 ℃左右脱硝效率达到最大。梁秀进[6]等人的研究结果同样表明,添加CO后会降低SNCR的最佳反应温度,以脱硝效率50%为基准,无CO和添加CO时的温度由863~937 ℃变为795~923 ℃,温度范围变宽。关于CO对SNCR脱硝温度的影响机理尚无定论,有研究表明[5]可能是CO增大了H的活性,如式(2)~(4)所示,CO消耗1个OH基团的同时生成两个OH,进而在较低温度下提高了OH和NH2的质量浓度,促进了低温下脱硝反应的进行。
表5 各生产线喷氨位置
CO+OHCO2+H(2)
O2+HO+OH(3)
NH3+ONH2+OH(4)
在实测的7条生产线中,除D生产线外,其余6条生产线的喷氨位置均调整至C5入口前,温度范围在830~900 ℃。根据工厂提供的数据,将喷氨位置从分解炉主炉出口调整至C5入口位置或出口位置,脱硝效率提高约10%。
4.4 脱硝效率
4.4.1 分级燃烧名义脱硝效率
在窑尾预分解系统采用分级燃烧来降低NOx是目前普遍采用的一种措施,因改造成本低,几乎无运行费用而被广泛应用。分级燃烧脱硝技术的原理是利用煤粉燃烧过程形成的贫氧气氛或富燃料区域,产生一定量的CO等还原剂,利用CO来抑制或还原NOx,从而减少NOx的排放。由于在分级燃烧阶段,既有NOx的生成,又有NOx被还原,且窑内还有部分CO进入分解炉系统,所以对分级燃烧的脱硝效率很难进行准确计算,为了简化计算过程,忽略窑内CO对NOx的还原作用,现进行以下定义:
式中:
η分——分级燃烧名义脱硝效率,%;
W烟室——烟室NOx含量,mg/Nm3;
W炉内——分解炉内煤粉燃烧产生的NOx含量,mg/Nm3;
WSNCR前——SNCR喷氨位置前烟气NOx含量,mg/Nm3。
分解炉内产生的NOx以燃料型NOx为主,煤粉是影响分解炉内燃料型NOx生成的重要因素,由于煤粉燃烧过程复杂,本文只考虑煤粉的挥发分和煤粉中的N元素含量。煤中的氮在燃烧过程中会不断析出,通常可以分为2个阶段:即挥发分均相生成阶段和焦炭异相阶段[7],而对于燃料型NOx,以挥发分中氮生成NOx,约占总燃料型NOx的60%~80%。煤粉细度也对NOx的排放浓度有较大影响,一般认为煤粉越细,比表面积越大,NOx排放浓度会越小[7-8]。煤的工业分析见表6。
表6 7条生产线煤粉挥发分和N元素分析%
燃料型NOx除了与挥发分有关外,还与煤粉自身的含氮量有较大关系,同条件下,煤粉含氮量越高,燃料型NOx生成浓度越高。按1 kg实物煤(热值约23.0 MJ/kg)约产生7.5 Nm3烟气,考虑尾煤占总燃煤的实际比例,并根据燃煤中氮元素含量,水泥窑燃煤中氮与NOx的转化率为20%~80%[9],考虑到分级燃烧会抑制煤粉中的氮向NOx转化,所以本文按转化率30%计算,忽略挥发分的影响因素(由于挥发分差距不大),可大致计算出A~G生产线炉内煤粉燃烧产生的NOx的浓度。根据式(5)计算可得到A~G生产线分级燃烧名义脱硝效率,如图3所示。
图3 A~G生产线分级燃烧名义脱硝效率
分级燃烧名义脱硝效率在11.0%~46.3%之间,A~C生产线旁置预燃室炉,D生产线流化床炉型,分级燃烧名义脱硝效率均较高,尤其是A和C生产线,脱硝效率大于40%。而E~G三条生产线中,E和G生产线为常规的旋流喷腾炉,脱硝效率在15%以下。只有F生产线进行了彻底的分级燃烧改造,且效果很好。主要改造内容为将其中两支喷煤管移至分解炉锥部,同时将三次风管进行了上移。主要原理是下移部分喷煤管至锥部有利于煤粉在贫氧区生成CO,同时因为锥部区域风速较大,有利于煤粉的分散,并避免产生局部高温区;含CO的烟气在上升过程抑制并还原NOx,上移三次风管有利于延长CO还原NOx的时间,降低分解炉出口NOx的浓度。
4.4.2 SNCR名义脱硝效率
SNCR的名义脱硝效率见式(6):
式中:
ηSNCR—— SNCR名义脱硝效率,%;
W烟囱——窑尾烟囱NOx含量,mg/Nm3。
喷氨量直接影响SNCR的脱硝效率,但SNCR脱硝效率同时受喷枪位置和喷射效果(氨水雾化效果)、烟气中CO含量、温度等因素的影响,氨水喷量越大,喷枪雾化效果越好,温度越合适,SNCR脱硝效果越好。图4为A~G生产线SNCR名义脱硝效率。表7为各线吨熟料氨水用量,氨水用量是影响SNCR名义脱硝效率的最主要因素之一,D生产线氨水用量最大,对应脱硝效果最为明显,但从数据来看氨水用量与SNCR名义脱硝效率并非呈绝对的正比,且氨水用量越大,氨逃逸浓度越高。
图4 A~G生产线SNCR名义脱硝效率
表7 A~G生产线脱硝单位熟料氨水用量kg/t
4.4.3 综合名义脱硝效率
综合名义脱硝效率的计算并非分级燃烧名义脱硝效率与SNCR名义脱硝效率之和,笔者认为综合名义脱硝效率以公式(7)来计算更为合理。由此计算出综合名义脱硝效率,如图5所示。
式中:
η综合——综合名义脱硝效率,%。
图5 A~G生产线综合名义脱硝效率
由图5可以看出综合名义脱硝效率在77.4%~93.1%,比传统所说的分级燃烧+SNCR脱硝效率要高,一是计算方法不同,二是与选取这些水泥企业进行了脱硝技术改造有关,三是企业加大了氨水用量。但加大氨水用量很可能造成氨逃逸超标,由于该7条生产线缺少精确的窑尾烟囱氨逃逸监测数据,在这里不做深入讨论,氨逃逸问题将可能成为今后脱硝改造研究的重点。
5 结论
本文通过对华北区域7条水泥生产线NOx排放浓度进行测试分析,研究了影响NOx排放的因素,得到以下结论及脱硝经验:
(1)窑尾烟室CO浓度与NOx的浓度密切相关,CO浓度越高,烟气中NOx浓度越低,反之亦然。
(2)分解炉炉型不同对NOx排放有较大影响。单从NOx减排角度来看,旁置预燃室炉和流化床炉型有利于还原窑尾烟气中的NOx。
(3) SNCR脱硝系统喷枪的位置与脱硝效率显著相关,大多数生产线的喷枪安装在C5入口位置,有利于脱硝效率的提升或氨水用量下降。
(4)分级燃烧名义脱硝效率在11.0%~46.3%之间,SNCR名义脱硝效率在75.9%~92.2%之间,综合名义脱硝效率在77.4%~93.1%之间。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,湖北省生态环境厅印发《湖北省工业炉窑大气污染物排放标准(征求意见稿)》。本标准适用于湖北省现有工业炉窑的大气污染物排放管理,以及工业炉窑新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的大气污染物排放管理。除本标准明确的水泥行
近日,湖北省生态环境厅发布《湖北省生活垃圾焚烧大气污染物排放标准(征求意见稿)》。本文件适用于湖北省现有生活垃圾焚烧厂的大气污染物排放管理,以及新建、改建、扩建生活垃圾焚烧厂的环境影响评价、环境保护设施设计、环境保护设施验收、排污许可及投产后的大气污染物排放管理。生活垃圾焚烧炉烟
生态环境部发布关于公开征求国家生态环境标准《铅、锌工业大气污染物排放标准》(征求意见稿)意见的通知,本标准规定了铅、锌工业大气污染物排放控制要求、监测和监督管理要求。本标准适用于现有铅、锌工业的企业或生产设施的大气污染物排放管理,以及铅、锌工业建设项目的环境影响评价、环境保护设施
天津市市场监督管理委员会发布天津市地方标准《橡胶制品工业大气污染物排放标准》(DB12/1353-2024)。本文件规定了橡胶制品工业大气污染物有组织与无组织排放控制、管理措施、污染物监测和监控,以及实施与监督要求。本文件适用于现有橡胶制品工业排污单位的大气污染物排放管理,以及橡胶制品工业建设
生态环境部发布国家生态环境标准《国家污染物排放标准实施评估技术导则(征求意见稿)》,向社会公开征求意见,本标准规定了国家污染物排放标准实施评估的总体要求,并对评估资料数据收集与调研、行业发展分析及评估重点问题识别、标准执行情况评估、标准实施绩效评估、标准技术内容适用性评估要求、评
近日,北京市生态环境局组织起草了地方标准《危险废物焚烧大气污染物排放标准(征求意见稿)》。本次为第一次修订。本文件全文强制。《危险废物焚烧大气污染物排放标准(征求意见稿)》.pdf《危险废物焚烧大气污染物排放标准(征求意见稿)》编制说明.pdf本文件代替DB11/503—2007《危险废物焚烧大气污
近日,山西省市场监督管理局发布了山西省地方标准《水泥工业大气污染物排放标准(DB14/3176—2024)》。该标准自2025年5月1日开始实施。本文件适用于山西省行政区域内现有水泥工业企业或生产设施的大气污染物排放管理,以及建设项目的环境影响评价、排污许可证申请与核发、建设项目环境保护设施设计和
案例一、万载县某机动车检测有限公司出具虚假排放检验报告案【案例特点】该案件为生态环境部门办理的机动车排放检验领域第三方机构典型案例【案情简介】2024年4月,宜春市组织相关专家和执法骨干开展了机动车环检机构专项检查,发现万载县某机动车检测有限公司存在双排口车辆只插入单采样管检测并出具
2024年10月24日,陕西省生态环境厅举行新闻发布会介绍生态环境领域法规与标准建设工作情况,发布会上有哪些精彩问答?环境保护杂志社:我们关注到,陕西省出台了《关中地区生活垃圾焚烧大气污染物排放标准》,请问该标准出台的背景是什么,将会产生什么样的环境效益?省生态环境厅法规与标准处一级主任
辽宁省市场监督管理局近日发布一批地方标准草案征求意见稿,其中包含《辽宁省火电厂大气污染物排放标准》,其中规定了辽宁省火电厂大气污染物排放限值、监测和监督管理要求、无组织排放控制要求以及标准的实施与监督等相关规定,其中燃煤发电锅炉,以煤矸石、油页岩、石油焦等为燃料的发电锅炉,以油为
10月14日,生态环境部部长黄润秋主持召开部常务会议,审议并原则通过《关于进一步加强生态保护和修复监管的指导意见》《炼焦化学工业大气污染物排放标准》《煤层气(煤矿瓦斯)排放标准》,山东海阳核电项目5、6号机组工程环境影响报告书(选址阶段)和选址安全分析报告审评情况。生态环境部党组书记孙
随着国家节能减排的深入推进,生活垃圾分焚烧发电行业烟气排放逐步推行超低排放要求,NOX浓度控制已成为必须解决的问题,本文对目前垃圾焚烧发电厂采用的两种脱硝技术进行探讨,明晰优缺点,为生活焚烧发电厂项目决策提供依据。
锅炉燃用低热值高灰分燃料,尾部灰浓度远高于煤粉锅炉,会造成SCR反应器催化剂磨损严重、使用寿命降低,将使运行费用增加较大;省煤器后烟温较煤粉炉低,设计310℃左右为SCR脱硝反应的温度下限,不利于SCR反应器提高脱硝效率;由于催化剂的加入会将SO2氧化为SO3并与逃逸氨反应生成硫酸氨和硫酸氢铵,易造成空预器积灰堵塞和腐蚀且系统阻力增加较大,影响机组运行安全。鉴于以上因素,不考虑采用SCR或者SNCR+SCR联合脱硝工艺。
摘要:某电厂针对锅炉烟气脱硝系统运行中存在的问题进行深入地研究,在原有脱硝设备系统基础上,实施了SCR脱硝系统的改造,使得锅炉烟气氮氧化物的排放达到了环保要求标准,从而实现本单位的节能高效发展目标。关键词:锅炉烟气;SCR脱硝系统;氮氧化物;某电厂共有三台240t/h循环流化床锅炉,之前炉膛顶
摘要:伴随着我国对NOx的排放管控日益严厉,通过高效低氮燃烧技术配合SNCR技术或SNCR/SCR联合技术进行脱硝已经成为主流。虽然目前燃煤工业炉窑NOx的减排效果十分显著,但是过分追求脱硝效率,容易增加氨耗量,进而引发氨逃逸,造成二次污染及腐蚀设备等问题。本文通过分析SNCR脱硝技术中氨耗量和氨逃逸
摘要:水泥行业为实现超低排放,按照水泥熟料生产工艺及废气限值,结合SNCR脱硝系统、袋收尘器的优势,利用新材料、新技术的不断发展进步,有针对性地采用了三种方法进行超低排放改造,对脱硝治理及收尘治理的技术改造进行浅谈。引言2020年3月,河北省印发《水泥工业大气污染物超低排放标准》地方标准
摘要:为了检验SNCR脱硝技术在高效低NOx液态排渣煤粉工业锅炉中的应用效果,在一台8.4MW有机热载体锅炉炉膛内开展了SNCR脱硝技术工业化试验研究。选用尿素作为还原剂,搭建了工业化SNCR脱硝试验平台。在20%、15%、10%三种浓度尿素溶液下进行了不同尿素溶液喷射量、不同氧含量、不同锅炉负荷下的SNCR脱
摘要:通过将分解炉喷煤管下移至分解炉缩口上方300mm对称布置;在三次风管与分解炉交汇处砌一道砖墙,使三次风管道的通风面积减小为原来的80%;从C4下料管分别引两路下料管到分解炉锥体的技术改造,结合控制高温风机转速、新老下料管分料比例以及系统漏风等生产操作,可以有效降低脱硝氨水用量,减少NO
0引言控制NOx排放已成为国际共同关注的话题。循环流化床锅炉燃烧温度低,可以抑制炉内温度型NOx的生成。某电厂筹备660MW超临界循环流化床(CFB)机组,为达到更严格的环保标准,需加强脱硝。选择性非催化还原(SNCR)脱硝技术安装装置少、成本低,SNCR反应温度与CFB锅炉旋风分离器内温度场相适应,烟气流动
摘要:选择性非催化还原脱硝(SNCR)技术因其系统简单、操作方便、运行成本低等优势,在中小窑炉中得到了较为广泛的应用,但在陶瓷烟气治理中还未见报道。以SNCR技术在某陶瓷行业的应用为例,介绍和分析了SNCR脱硝技术、系统组成模块化以及反应温度、氨氮摩尔比、混合程度、停留时间等关键因素对脱硝效
摘要:选择性非催化还原脱硝法(SNCR)投运后,电厂烟囱出现冒“白烟”现象.通过分析白烟的成分,确定白烟成分为氯化铵.使用氨逃逸激光光谱分析仪与烟气自动监控系统相结合的试验方法,分析得到NH3Cl生成的特点,制定SNCR喷氨控制策略,从而有效抑制白烟的生成.0引言选择性非催化还原脱硝法(SNCR)是目前垃圾焚
在服务经济的时代,服务在企业的持续发展中有着举足轻重的作用。如今环保行业烟气净化领域除了核心工艺技术和产品制造能力外,给客户一个高品质全生命周期售后服务的承诺,并在出现问题时可以积极地提供及时准确的售后检测和维修保障服务,第一时间替客户排忧解难显得至关重要。Intheeraofserviceecono
文章介绍了某电厂660MW燃煤机组SCR脱硝装置的超低排放性能评估结果。在100%、75%及50%三个负荷工况下,对整个脱硝装置进行超低排放性能评价分析。研究结果表明,通过对SCR脱硝装置进行提效改造,可以显著提升装置的脱硝效率,达到超低排放的标准。关键词:SCR脱硝;超低排放;流场优化;NOx浓度;氨逃
摘要:W火焰锅炉燃用无烟煤时,即使采用低氮燃烧技术,其产生的NOx质量浓度仍可高达700~1200mg/m3。因此,其超低排放路线往往是“SNCR+SCR”联用。SNCR投资及运行成本高,且“SNCR+SCR”联用时,氨逃逸极易超标并导致空预器堵塞。某电厂2台330MW的W火焰锅炉采用SCR分区混合动态调平技术及加装催化剂的
摘要:对现有采用SCR工艺典型燃煤机组脱硝超低排放改造前后性能进行对比评估,可为后超低排放形势下燃煤机组SCR烟气脱硝装置的高效、经济、稳定运行提供参考及借鉴。通过跟踪并对35个电厂81台采用SCR烟气脱硝工艺燃煤机组超低排放改造前后的脱硝装置运行现状进行对比分析,得到了脱硝效率、入出口NOx浓
摘要:燃煤电厂是我国电力资源的主要来源,对于我国经济发展具有重要作用。燃煤过程中容易产生许多环境污染物。氮氧化物是燃煤过程中产生的污染物之一,其对酸雨、温室效应、光化学反应等都具有影响,严重污染环境。本文对燃煤烟气中氮氧化物脱除的技术选择性催化还原法(SCR)进行分析,对SCR技术的原理
为研究火电厂机组负荷调整对选择性催化还原法(SelectiveCatalyticReduction,SCR)脱硝效果的影响,试验以SCR脱硝系统为研究对象,采用控制变量的方式,分别对5台火电厂机组在不同负荷条件下的烟气的温度、氧含量、污染物含量、脱硝效率以及SO2/SO3转化率等进行测量比较。结果表明,随着负荷的降低,氧
摘要:基于日益严峻的大气污染形势,针对低浓度瓦斯燃气内燃发电机组排放NOx污染物的特点,对其烟气脱硝系统进行优化设计研究。研究结果表明,根据烟气排放的测试数据,采用SCR(选择性催化还原)脱硝技术控制低浓度瓦斯内燃机发电机组的排放是最佳途径。为了保证高脱硝效率,对其烟气脱硝装置进行了优
结合220t/h煤粉锅炉烟气SCR脱硝工程实例,详细阐述了氨水贮存及输送系统、氨水蒸发系统、SCR反应器等工艺流程及相关设备选型选材,分析了系统运行效果及其经济性。结果表明,SCR反应器进口NOx质量浓度为782~796mg/Nm3,NH3/NOx摩尔比为0.93时,出口可降至71~88mg/Nm3,脱硝效率可达88.9%~91.0%,逃
“若全面开展氨逃逸的监测,大部分水泥企业都不合格!”日前,一水泥大省业内人士对中国水泥网表示,“尤其是超低排放改造要求高、任务紧的省份,氨逃逸的状况更不容乐观。”自超低排放在水泥行业大力推出后,氨逃逸问题就一直被部分业内人士所诟病。尽管已有少数省市对水泥行业氨逃逸给出了具体规定,
摘要为控制燃煤锅炉烟气中氮氧化物的排放控制,选择性催化还原(SCR)脱硝技术被大量推广应用,该技术的核心在于SCR脱硝催化剂的性能。对于活性降低但满足再生条件的SCR脱硝催化剂可以通过再生处理后进行循环利用。对由于不同原因失活的催化剂,可采用不同的或复合再生技术。SCR脱硝催化剂作为一种耗材,
摘要:在SCR脱硝反应中,催化剂是核心物质,对催化反应的脱硝效率有着重要的影响。基于脱硝催化剂的影响以及催化剂对SCR脱硝反应的重要性,文章结合SCR脱硝反应实际,分析SCR脱硝反应中催化剂的表现以及催化剂的重要指标,为SCR脱硝反应提供有力的催化剂支持,并通过催化剂指标的分析,掌握催化剂的特点,为催
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!