登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要: 介绍了一种加热炉燃烧系统CO减排技术,该新技术对于高炉煤气双蓄热式加热炉具有CO回收和降低排放的意义,降低了加热炉能耗,减少了环境污染,增加了环保效益.
对于高炉煤气双蓄热加热炉.从控制角度看.无论是集中换向控制还是分散换向控制.均存在换向阀至烧嘴喷口之前的煤气在排烟的过程被烟气带走.这样既浪费了能源又造成环境污染.针对此问题.相关设计院、热工专家研发出加热炉燃烧系统CO减排技术.该技术在节能减排方面有显著效果。
1项目介绍
以唐山某钢厂加热炉项目为例.加热炉设4个供热段.炉温自动控制.通过设定各部分加热的温度值,控制各段燃料量的输入.保证出钢温度及温度的均匀性。该加热炉一加、二加、三加采用分段分侧半分散控制.均热段采用全分散控制。换向阀门全部为气动,以洁净的压缩空气作为动力源。
全炉共24台煤气小型双执行器三通换向阀和24台空气小型双执行器三通换向阀。正常工作时换向周期40-60 s左右.以时间为控制参数。
2存在的问题
该加热炉采用高炉煤气双蓄热式燃烧.分段分侧控制方式.每个供热段的左右两侧交替燃烧和排烟,采用三通换向阀进行换向,约60s换向一次。
每个三通换向阀之间的煤气、烟气管道是相互独立的.但是三通阀到烧嘴之间的管道(包括烧嘴本体)则是煤气和烟气共同使用的。在正常生产时.燃烧侧的烧嘴将会由燃烧状态切换到排烟状态.即三通换向阀将会由进煤气状态切换到排烟气状态.换向后公共管道内的高炉煤气将会被抽到排烟管道中f图1中云线区域管道),导致煤气浪费以及排放污染。
而且由于换向阀每60 s将换向一次.加热炉的四个控制段将会周而复始不停地排放公共管道中的煤气。这将造成每天1 440次的煤气直接排放.每年(按330 d)47.52万次的煤气直接排放,既造成了煤气的严重浪费,也造成了大气的污染。
煤气浪费量计算值见表1。
对此数据分析:
(1)煤气的直接排放,造成能源的严重浪费,增加了生产成本:
(2)排放物污染大气环境:
(3)加热炉排放烟气周围可能存在公共及生活区域,存在安全隐患。
3 CO减排技术应用
(1)为了解决上述所说的加热炉公共管道煤气排放浪费及污染的问题.就需要避免换向时煤气直接被抽到煤烟管道中直接排放。
(2)为了解决燃烧向排烟切换时.三通阀后管道内的煤气则被抽到烟气管道内。在三通阀换向(即三通阀的煤气阀板切断)后.采用一种中介气体将三通阀和烧嘴之间的公共管道内的煤气吹到炉内进行燃烧,这样再换向时.公共管道内存在的就是这种中介气体。然后换向阀的煤烟阀板打开.进行正常的排烟工作。这样就不会有煤气被吸入到烟气管道内了,避免了煤气浪费以及排放污染。
(3)中介气体必须采用不与煤气发生反应的气体,为考虑成本因素,选择煤烟烟气作为吹扫气体。
4安全联锁问题
主要安全问题是高炉煤气防爆.因此安全防护系统是关键。
高炉煤气的成分大致为二氧化碳6%。12%、一氧化碳23%。27%、氢气1%~4%、氮气55%。60%、烃类0.2%。0.5%及少量的二氧化硫。高炉煤气的着火温度是650。700℃.爆炸极限是46%。68%.因此必须确保炉膛内的温度高于700℃.高炉煤气的使用才处于安全状态。
安全措施:
(1)保险起见,当各段炉温超过750℃时,煤气反吹才允许投用:一旦各段炉膛温度低于750℃,该段煤气反吹停止运行。
(2)排烟温度高于200℃时,该段煤气停止反吹。
(3)在烟气反吹风机前增加一路氮气吹扫管路.在各支管末端阀门前增加放散管路.便于在该系统启用前或者停用后对该段管路进行吹扫。
(4)烟气风机人口前设置调节切断阀.当炉区停电时保证反吹系统与原系统能有效切断。
(5)所有电动阀门、气动阀门、风机电机等全部为防爆型.确保在煤气区域机电设备安全运行。
5技术改造特点浅析
该技术应考虑尽量减少对原加热炉燃烧系统的影响。包括产量、炉压、引风机运行、换向时间等因素,从以下几方面进行考虑:
(1)全部切断用阀门采用直行程两通换向阀,其优点在于:①相对于大口径快切阀,直行程换向阀的换向时间足够短:②相对于三通换向阀,其离所吹扫的管道足够近。减少对该侧燃烧系统的干扰。
(2)反吹管道及反吹三通阀的管径选取要适当加大.一要考虑现有的空间布置,二要考虑反吹时间.在替换煤气的过程中,尽量接近原有的煤气流量,模拟原有的燃烧状况,减少对生产的影响。
(3)设置烟气温度及炉内温度联锁,确保反吹系统安全使用。
(4)烟气反吹主管带快切功能.在系统故障或者停用时.能起到切断作用,确保安全。
(5)反吹烟气排放口设置在煤烟引风机后,减少煤烟引风机的负荷波动.充分考虑现有引风机的稳定运行.不对现有引风机造成干扰、引起喘振。
(6)在燃烧负荷变化时,可以根据实际状况调节反吹系统烟气量.模拟反吹前的燃烧状态.减少对生产的影响。
(7)重新优化原燃烧系统换向程序,反吹系统序退出时,原燃烧系统恢复到原始状态。
6应用效果
技术改造前高炉煤气蓄热式加热炉煤烟排放中CO含量约2.5×10-2-3×10-2,甚至更高。技术改造后.加热炉正常运行时煤烟排放中C0含量约2.5×10-3-3×10-3。大幅降低了CO排放量.又使煤气得到有效回收,减少了环境污染,节省了运营成本,为企业带来了经济效益和环保效益。
7 结论
高炉煤气双蓄热加热炉燃烧CO减排技术既带来了经济效益,又兼具环保效益,因此具有很大的技术推广前景。建议在有条件的钢铁企业进行推广应用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,第十五届中国航展在广东珠海开幕,吸引了47个国家和地区的1022家企业参展,规模空前。航天源动力携航天技术应用产业最新技术成果参展,并参与中国航天科技集团重大项目签约,签约金额近7亿元。习近平总书记指出,发展新质生产力是高质量发展的内在要求和重要着力点,绿色发展是高质量发展的底色
2024年8月大气网项目汇总新鲜出炉,本次我们照例统计了规模在3000万元以上的项目共计22项,总中标金额超过20亿元,其中电力行业占比达到60%以上。其中中煤能源集中采购一批静电除尘器设备,单个项目规模均在亿元左右。此外大唐集团也有多个项目公示。钢铁行业本月较为沉寂,规模最大的为本钢板材能源管
9月12日,广西钢铁炼铁总厂高炉煤气精脱硫中标公告发布。北京利德衡环保工程有限公司、广西华锐工程设计有限公司联合体中标,中标金额38191724元。公告如下:广西钢铁炼铁总厂高炉煤气精脱硫中标公告广西机电设备招标有限公司受广西钢铁集团有限公司的委托,就广西钢铁炼铁总厂高炉煤气精脱硫采用公开
中国招标投标公共服务平台发布广西钢铁炼铁总厂高炉煤气精脱硫中标候选人公示,北京利德衡环保工程有限公司(联合体成员:广西华锐工程设计有限公司)排名第一,报价约3819万元。该项目采用EPC总承包模式,计划在炼铁总厂指定的场地上建设一套高炉煤气精脱硫系统,系统工艺路线为:TRT后的高炉煤气一预
近日,鄂城钢铁能源环保部高炉煤气精脱硫项目成功投运,该项目投运后,将有效降低轧材加热炉用高炉煤气的硫化物含量,控制大气污染物的排放,为改善环境质量贡献重要力量,写下节能减排、循环经济实践的精彩篇章。该项目摒弃了传统煤气脱硫的“末端治理”老路,采用创新的“源头治理”策略,在煤气进入
2022年时,我们曾撰文分析了高炉煤气精脱硫领域的现状,彼时钢铁行业超低排放改造正如火如荼;截至今年8月,已有超过140家钢企在钢铁工业协会网站进行超低排放改造公示,全国43%的粗钢产能已完成全流程、39%的产能完成重点环节改造,钢铁行业污染物排放量下降60%,可以说距离80%的目标只有一步之遥。在
鞍钢智慧招投标平台发布本钢板材能源管控中心高炉煤气精脱硫4个超低排项目组包招标中标结果公告,鞍钢集团工程技术有限公司中标,投标报价7787万元。本招标项目共四部分,分别是:板材能源管控中心二加区域高炉煤气精脱硫改造EPC总承包工程,限价2050万元;板材能源管控中心四加区域高炉煤气精脱硫改造
如何加快发展新质生产力?绿色赋能是重要一环。近日,由中国航天科技集团有限公司六院11所西安航天源动力工程有限公司承揽的山东一烟气脱硫超低排放项目顺利实现通烟。目前,系统运行平稳,出口烟气各项指标均满足环保要求,该公司再次以航天技术助力客户提升产能和效益。作为国内领跑行业的能源环境综
酒钢公共交易平台发布酒钢集团宏兴钢铁股份有限公司本部新3号高炉煤气精脱硫建设项目EPC总承包采购招标项目招标公告,详情如下:一、项目基本情况项目编号:GSZDJSYXZRGS-GKZB-202407-08680项目名称:酒钢集团宏兴钢铁股份有限公司本部新3号高炉煤气精脱硫建设项目EPC总承包采购资金来源:企业自筹采购
北极星大气网获悉,兰州市生态环境局发布关于7月25日市民反映空气异味的初步调查情况通报。2024年7月25日凌晨,市民反映空气中存在异味,按照市委、市政府部署要求,我局迅速启动应急响应机制,全面组织进行排查溯源工作,并协同甘肃省生态环境厅开展监测调查。经对兰州市主城4区5个空气质量自动国控站
中国招标投标公共服务平台发布福建三钢闽光股份有限公司高炉煤气精脱硫EPC总承包工程中标候选人公示,中琉科技有限公司为第一标段和第二标段第一候选人,投标报价分别为8888万元和6750万元。
日前,大河环科大河邯钢设计院研究开发的烧结烟气CO减排技术,在邯钢邯宝360㎡烧结机投入使用,并顺利通过168小时验收,各项技术指标均达到行业先进水平,标志着大河环科烧结烟气CO减排技术取得新突破。在减污降碳大背景下,伴随着大气治理走向深入,钢铁企业有效控制CO的排放对持续改善大气环境质量至
在CO2催化转化中,CO2可在铁基催化剂和双功能催化剂上催化加氢制得短链烯烃。铁基催化剂受Anderson-Schulz-Flory(ASF)分布的影响,其选择性难以提升,而双功能催化剂能够打破ASF分布,使短链烯烃的选择性大幅度提升,但其转化率偏低。因此,开发具有CO2高转化率的双功能催化剂对CO2催化加氢高效制短链烯烃的意义重大。研究结论可为推动CO2资源化利用研究的长足发展提供参考,为实现“碳达峰、碳中和”目标贡献智慧和力量。
随着全球工业化进程的加快,二氧化碳的大量排放导致气候变暖。如何有效解决碳排放问题已成为全球的研究热点,二氧化碳捕集封存(CarbonCaptureUtilizationandStorage,CCUS)技术的应用可有效改善碳排放问题。目前,全球许多国家和地区已建有不同规模的CCUS项目,对CCUS技术和项目进行了系统总结。分析结果表明,CCUS项目在解决碳排放问题上有着较好的工业前景。
摘要:蓄热式加热炉在燃烧过程中,换向阀与蓄热烧嘴之间的CO会被直接排放到大气中,造成环境污染和能源浪费.通过研究与实践,将烟气反吹技术应用到蓄热式加热炉燃烧系统中,有效的解决了现有蓄热式加热炉大量残余CO排放的问题,带来了显著的经济效益和环保效益。随着国家对环境的重视程度越来越高,大气污染
本文论述钢铁工艺中减排CO的本质性问题以及未来的技术前景。另外,减排CO关乎海内外发展动向,是全球钢铁行业共同面对的问题。基于未来的措施,从新角度开展的技术开发已经开始,如利用CO的CCU技术(CO捕获与利用)、与可再生能源关联的脱碳氢炼铁等,本文就其开发动向进行论述。1前言长久以来,全球气
摘要:随着烧结环保形势的严峻,除SO2、NOx、颗粒物和二噁英外,铁矿粉烧结CO排放的问题逐步引起广泛重视。针对烧结过程排放CO高的问题,首先分析了烧结过程产生CO的机理,然后从源头削减、过程控制和末端治理全流程探讨了烧结减排CO的具体方案。认为采取各项措施降低烧结固体燃耗、提高燃料的完全燃烧
能源与环保这两个概念被越来越多的人联系在一起,挪威国家石油公司则率先设立了环保计划并于今年完成目标。提前四年完成80万吨碳减排量是如何做到的?该举不仅给世界能源行业做出了典范,更在注重环保的同时相对缓解了低油价的压力。自2008年以来,挪威国家石油公司就设立了一项环保计划,计划到2020年
工业革命前大气中的CO2浓度为27010-6,2013年大气中的CO2浓度已经达到40010-6,并且仍以每年0.4%的速度增加。2013年我国排放CO2大约30亿吨,居世界第二,预计2025年我国排放总量将超过美国居世界第一。CO2的分子量为44g/mol、熔点为-78.46℃、沸点为-56.56℃、气态密度为1.977g/L、液态密度为1.816kg/L
5家中小企业、5项低碳技术,年二氧化碳减排量有望超过1.18亿吨。日前,2014年世界自然基金会(WWF)气候创行者颁奖典礼在京举行,5家拥有最具潜力低碳技术的中小企业荣获“气候创行者”称号。在考核了企业减排潜力、技术创新度、市场潜力等指标后,竖式高温连续石墨化炉设备、新型气膜建筑、锌溴液流电池储能系统、金属复合再制造技术和低功耗智能电能表五项技术脱颖而出,如果在2024年达到预期市场份额,有望实现每年超过1.18亿吨的二氧化碳减排量。这个数字超过目前三峡电站每年完成的二氧化碳减排量。“我们认为低碳技术的
能够24小时不间断稳定提供能源,能大量解决当地农民就业,能变废为宝节能减排的新能源,只有生物能源。9月27日,在2011中国(成都)新能源国际峰会暨2011全球新能源企业500强颁奖典礼上,作为领奖代表企业武汉凯迪表示,中国是个化石能源资源贫乏且需求刚性增长最快的国家,中国也是古老的农业大国,生物质资源十分丰富。充分开发利用这些长期废弃或闲置的资源,不仅可以为我国8亿农民创造出数千万的低碳绿色就业岗位,使农民每年增收超过3000亿元,而且每年可实现减排CO2超过10亿吨。生物能源产业是“劳动密集型、资金密集型、技术密集型、城乡结合型和工农一
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!