登录注册
请使用微信扫一扫
关注公众号完成登录
自2017年中旬以来,该污水处理厂持续受到海水倒灌冲击,主要表现为污水处理厂中氯离子浓度电导率随着每日潮汐潮位的变化呈现出波动性变化。在正常运行时,生化池电导率为2~3μS/cm,氯离子浓度为600~1 000 mg/L;在高潮位时,污水厂受海水倒灌冲击时,生化池电导率则高达8~16μS/cm,氯离子浓度为3 000~6 000 mg/L。在受高氯波动冲击过程中,污水处理厂出水并没有受影响,只是在高潮位的情况下,为保证TN去除效果,碳源多投加近一倍。为了验证污水处理厂的实际运行效果,对生化段进行了沿程和小试测定。
1.1 试验方法
1.1.1 氯离子冲击对硝化的影响
(1)对污泥硝化性能的测定。在低潮位时取缺氧池出水和海水分别配置氯离子浓度为1 000 mg/L、2 000 mg/L、3 000 mg/L和5 000 mg/L的原水,分析不同氯离子浓度对污泥负荷的影响。
(2)对悬浮载体硝化性能的测定。在低潮位时取缺氧池出水和海水分别配置氯离子浓度为1 000 mg/L、2 500 mg/L、4 000 mg/L和6 000 mg/L的原水,分析不同氯离子浓度对悬浮载体硝化负荷的影响。
1.1.2 氯离子冲击对反硝化的影响
(1)不同氯离子浓度的影响。在低潮位时取厌氧池出水,利用海水分别配置氯离子浓度为1 000 mg/L、3 000 mg/L、5 000 mg/L原水,确定氯离子浓度对活性污泥反硝化性能的影响。
(2)不同C/N(COD/氨氮)比的影响。在低潮位时取厌氧池出水,利用海水分别配置两组氯离子浓度各为800 mg/L和5 000 mg/L的原水进行反硝化小试,通过人为投加乙酸钠,研究不同C/N比在高、低潮位时对活性污泥反硝化性能的影响。
1.2 水质分析方法
试验中氨氮采用纳氏试剂分光光度法,硝氮采用紫外分光光度法,TN采用过硫酸钾氧化紫外分光光度法,TP采用钼锑抗分光光度法;pH、DO采用WTW Multi-3430i离线测定;COD的测定通过添加硝酸银掩蔽氯离子后采用国标法测定。
1.3 高通量测序
高通量测序通过试剂盒(E.Z.N.A Mag-Bind Soil DNA Kit,OMEGA)提取微生物基因组DNA,通过1%琼脂糖凝胶电泳检测抽提基因组的完整性,利用Qubit3-0 DNA试剂盒检测基因组DNA浓度。PCR扩增所用引物为341 F/806R。PCR产物进行琼脂糖电泳,通过DNA胶回收试剂盒(SanPrep)对PCR产物进行回收,利用Qubit3.0 DNA检测试剂盒对回收的DNA精确定量,按照1∶1的等量混合后测序,等量混合时,每个样品DNA量取10 ng,最终上机测序浓度为20 pmol,通过Illumina Miseq测序平台完成对样品高通量测序。
采用UPARSE 软件(version 7.1)根据 97%的相似度进行OTU聚类;使用UCHIME软件剔除嵌合体。利用RDP classifier对每条序列进行物种分类注释,比对Silva数据库(SSU123),设置比对阈值为70%。
2 结果与讨论
2.1 生化池处理效果
研究期间,跟踪了污水处理厂2018年9月至2019年5月经过一个冬季的生化段水质指标,生化池进水COD、NH3-N、TN和TP的浓度分别为403.2±241.4 mg/L、50.4±4.2 mg/L、66.2±12.0 mg/L和5.1±1.2 mg/L,进水浓度高,且波动性大,出水COD、NH3-N、TN和TP的浓度分别为29.7±18.6 mg/L、0.70±0.89 mg/L、8.2±2.0 mg/L和0.3±0.3 mg/L,可以稳定达到GB 18918-2002一级A标准,尤其是氨氮可以达到地表Ⅳ类水标准,去除率达到98.6%。TN去除率87.6%,出水低于10 mg/L,TP去除率94.1%。采用改良AAO镶嵌MBBR工艺抗高氯波动冲击效果良好。
2.2 氯离子冲击对硝化的影响
2.2.1 氯离子冲击对污泥硝化性能的影响
氯离子冲击对污泥硝化性能影响如图1所示,在活性污泥系统下,水温13~15 ℃、污泥浓度为2.7 g/L时,随着氯离子浓度由1 000 mg/L增加至5 000 mg/L,氨氮降低至1.5 mg/L以下时,污泥硝化负荷由0.083 kgN/(kgMLSS·d)降低至0.029 kgN/(kgMLSS·d),下降了65.1%,表明氯离子浓度的增加对污泥的硝化性能产生了不利的影响。氯离子浓度过高会引起活性污泥中细胞脱水,并导致相关生物酶发生盐析作用失活,从而影响微生物正常的生理代谢。Wang等发现,随着进水盐度由0增加至8%,污泥中硝化菌的丰度降低,进而使比氨氧化速率和比亚硝酸盐氧化速率分别降低了74.0%和82.0%,导致了系统硝化性能的下降。
2.2.2 氯离子冲击对悬浮载体硝化性能的影响
氯离子冲击对悬浮载体硝化性能的影响如图2所示,在悬浮载体系统下,水温14~15 ℃、填充率为30%时,当氯离子浓度由1 000 mg/L增加至6 000 mg/L时,悬浮载体的硝化容积负荷并无明显变化,为0.078kgN/(m3·d)。综上所述,氯离子冲击对悬浮载体的硝化性能并无明显影响,表明在抗高盐特征上,悬浮载体优于活性污泥。相关研究表明,当盐度上升后,细菌可通过增强EPS分泌来进行自我保护,从而在一定程度上保持细胞生理形态和提升耐盐能力。而同一生物池内的悬浮载体生物膜EPS的量一般远大于活性污泥EPS的量,因此导致生物膜的这种保护作用强于活性污泥,从而使悬浮载体生物膜更抗高盐度冲击,另外,也有研究发现,悬浮载体生物膜泥龄长,为硝化菌种的富集提供了条件,从而增强了处理效果。
2.3 氯离子冲击对反硝化的影响
从污水处理厂实际运行看,氯离子冲击时,需要多投碳源,从而保障缺氧区脱氮效果,在此基础上分析了高氯冲击对反硝化的影响。
2.3.1 氯离子冲击对反硝化效果的影响
氯离子冲击对活性污泥反硝化效果的影响如图3所示,在水温19~21 ℃、污泥浓度为2.9~3.1 g/L的情况下,当氯离子浓度由1 000 mg/L增加至 5 000 mg/L,经过4 h后,反硝化速率由0.017 kgN/(kgMLSS·d)下降至0.014 kgN/(kgMLSS·d),氯离子浓度提升5倍后,反硝化速率降低18%,表明氯离子浓度对污泥的反硝化效果产生不利的影响。相关研究表明,高氯条件能够抑制反硝化过程中硝酸盐还原酶和亚硝酸盐还原酶的活性,引起N2O的积累,导致了反硝化速率的降低。
当氯离子浓度分别为1 000 mg/L、3 000mg/L和5 000 mg/L的情况下,硝氮分别降低8.54 mg/L、7.97 mg/L、7.08 mg/L,COD分别消耗52.8 mg/L、55.2 mg/L、53.6 mg/L,ΔCOD/ΔNO3-分别为6.18、6.93、7.57,结果表明随着氯离子浓度的升高,去除单位浓度硝氮所消耗的COD越多。可能的原因有两个:①氯离子冲击的情况下,微生物的胞外聚合物分泌量有所增加。胞外聚合物以多糖和蛋白质为主,且来源于外界的有机物。在氯离子反复冲击的情况下,系统中胞外聚合物含量的增加,增大了对外界有机物的需求量;②相关研究表明,当氯离子的浓度不超过30 000 mg/L时,对活性污泥中转化酶的活性具有促进作用,增多了碳源的无效利用。
2.3.2 不同C/N比对氯离子冲击的情况下反硝化性能的影响
不同C/N比对氯离子冲击情况下反硝化性能的影响如表2和图4所示。当试验的水温为19~21 ℃,在不添加醋酸钠且氯离子浓度分别为800 mg/L和5 000 mg/L的情况下,反硝化速率分别为0.018 kgN/(kgMLSS·d)和0.014 kgN/(kgMLSS·d),从而表明了氯离子冲击对于反硝化过程的抑制性。该结果与2.3.1中结果一致。在添加醋酸钠且氯离子浓度分别为800 mg/L和5 000 mg/L的情况下,反硝化速率分别增加至0.052 kgN/(kgMLSS·d)和0.036 kgN/(kgMLSS·d)。C/N比由10.6提高至16.6后,反硝化速率分别提高2.9倍、2.6倍。上述结果表明,即使在有外加碳源的情况下,氯离子对反硝化过程的影响依然存在;但无论在低氯离子浓度和高氯离子浓度条件下,乙酸钠的投加均能够大幅提高反硝化速率。研究表明醋酸钠是易降解有机物,更易于被反硝化菌吸收利用,这是其导致反硝化速率大幅提高的原因。与此同时,该现象也解释了厂方在高潮位的情况下,可以通过增大碳源投加量应对氯离子冲击的原因。
在该污水处理厂的升级改造中,采用改良AAO镶嵌MBBR工艺实现了原池改造,利用MBBR工艺强化硝化的原理,缩小了好氧池容,扩大了缺氧池容,增加了缺氧区的HRT,所以在高氯波动冲击的情况下,即使反硝化速率降低,通过延长缺氧区的HRT和投加碳源,保障了整体了TN的稳定达标。
2.4 MBBR工艺对功能微生物的选择作用
分别取该污水处理厂MBBR区挂膜悬浮载体和好氧池污泥进行高通量测定,从而判定微生物群落结构。
样品中优势微生物组成如图5所示,悬浮载体和污泥中丰度较高的微生物包括Nitrospira(硝化螺菌属)、Nitrosomonas(亚硝化单胞菌属)、Candidatus Microthrix、Hyphomicrobium(生丝微菌属)、Trichococcus(明串珠菌属)、Thermomonas(热单胞菌属)、Mycobacterium(分支杆菌属)、Ornithinibacter、Terrimonas和Nitrolancea等。
Candidatus Microthrix属是活性污泥中常见的微丝菌属,常与污泥膨胀有关,其在活性污泥和悬浮载体上的相对丰度分别为21.25%和6.33%。该菌属比表面积大,有利于活性污泥细胞摄取低浓度底物,减少水流对细胞的冲刷。在悬浮载体中,Candidatus Microthrix的存在有利于构成生物膜的骨架结构,为微生物提供附着生长的场所。
Ornithinibacter在悬浮载体生物膜和污泥中的丰度分别为3.01%和10.87%。研究表明,该菌属在污水处理当中能够抗病毒、产生胞外聚合物,从而维持微生物群落的骨架结构,保证了系统的稳定运行。
Hyphomicrobium属在悬浮载体生物膜和污泥中的丰度分别为1.07%和1.36%,其在溶解氧充足的情况下具有好氧反硝化的功能。此外,相关研究表明,该菌属对二氯甲烷、甲胺磷、二甲基硫醚和甲醇等具有降解功能,李继兵利用稳定同位素探针技术发现了该菌属可参与PAHs污染水体中菲的降解,并验证了该菌属具有降解菲的功能。
Terrimonas、Thermomonas、Trichococcus、Thauera和Defluviimonas属为污水处理系统当中常见的反硝化菌属。其中Terrimonas属能够降解蒽类物质,在悬浮载体和活性污泥中的相对丰度分别为0.35%和0.76%。Thermomonas和Trichococcus在悬浮载体中的相对丰度为0.20%和0.74%,在活性污泥中的相对丰度分别为0.75%、和6.96%。Thauera和Defluviimonas对高浓度氯离子具有耐受性,在活性污泥中的相对丰度分别为0.44%和0.78%,两者的存在为高氯条件下反硝化过程的顺利进行提供了微观保障。
Nitrosomonas在悬浮载体生物膜和活性污泥中的相对丰度分别达到了0.39%和0.04%,而Nitrospira的相对丰度则分别为9.74%和0.32%。Nitrolancea是一种新型的杆状硝化菌属,在污泥中并未检测到该菌属,在悬浮载体上其相对丰度达到0.43%。综上所述,与活性污泥相比,悬浮载体更能够富集硝化菌属,对Nitrospira的富集效果更为显著。研究表明Nitrospira兼具有亚硝化和硝化的功能,虽然该菌属的比增长速率较低,但对基质的亲和力大,在低浓度氨氮的环境中更具竞争优势,因此Nitrospira通常出现在氨氮浓度相对较低的情况下。悬浮载体的加入使得Nitrospira成为主要的硝化菌属,其相对丰度为活性污泥中的30倍,从微观角度上反映了悬浮载体对于系统硝化性能的强化作用,这也是悬浮载体对氯离子冲击抵抗性强的原因。
为了进一步研究亚硝化菌(ammonia oxidizing bacteria,简称AOB)和硝化菌(nitrite oxidizing bacteria,简称NOB)在污泥中的分布情况,采用荧光原位杂交技术,以AOB和NOB特有的核酸序列为探针进行染色,其结果如图6所示。在悬浮载体中,AOB和NOB的占比相当,且分布均匀广泛(图6a和6b)。然而在活性污泥中,AOB和NOB的含量极少,几乎无法辨别其存在(图6c和6d)。上述结果表明悬浮载体上AOB和NOB的含量远高于活性污泥,这与图5的结果相一致,从而进一步证明了悬浮载体对于系统硝化性能的强化以及抗氯离子冲击的原因。
为研究群落生态学中微生物多样性,通过单样品的多样性分析 (Alpha多样性) 可以反映微生物群落的丰度和多样性。本研究中测定了一系列统计学分析指数,用以估计环境群落的物种丰度和多样性。其中,Chao 1算法用以估计群落中含OTU数目,进而在生态学中估计物种总数。Shannon多样性指数与Simpson多样性指数为较常见的用于反映Alpha多样性的指数。Shannon值越大,说明群落多样性越高,Simpson指数值越大,说明群落多样性越低。如表3所示,对悬浮载体生物膜和活性污泥高通量结果进行多样性分析,由Chao 1指数可知,相较于活性污泥,悬浮载体生物膜的微生物群落相对丰度降低,Shannon指数略微降低,Simpson指数升高,表明MBBR生物膜在长期富集过程中逐渐淘汰了其他杂菌,导致微生物群落丰富度及多样性略微上升,而物种均一化程度则略微下降。
3 结论
(1)污水处理厂采用改良AAO镶嵌MBBR工艺,抗氯离子波动冲击能力强,出水COD、NH3-N、TN和TP的浓度分别为29.7±18.6 mg/L、0.70±0.89 mg/L、8.2±2.0 mg/L和0.3±0.3 mg/L,稳定达到设计标准。
(2)氯离子冲击对于活性污泥的硝化性能影响明显,而对悬浮载体的硝化性能无明显影响,表明悬浮载体的抗氯离子冲击性强于活性污泥。
(3)氯离子冲击对于活性污泥反硝化具有不利的影响,并增大了反硝化的碳源消耗量。投加醋酸钠大幅提高了反硝化速率,减轻了氯离子冲击对于反硝化的影响,解释了污水处理厂通过增大碳源投加量应对高潮位海水的冲击。
(4)MBBR悬浮载体对硝化菌具有良好的筛选和富集作用,悬浮载体上硝化菌占比10.56%,为活性污泥中的29倍,从而增强了系统的硝化性能,提高了污水厂抵御氯离子冲击的能力。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近年来,由于我国各地区水环境改善的环境目标的不断提升,各地市对市政污水处理厂的出水都提出了更严格出水水质标准,市政污水处理厂水处理厂也在不断地进行升级,以符合更严格的排放要求。在一些难以扩充厂区土地的地区,采用MBBR(移动床生物膜反应器)的工艺在污水厂的生物池进行原位改造,可以在一
8月15日,蚌埠高新区工业污水处理厂项目环境影响评价第一次公示发布。项目位于安徽省蚌埠市高新区黄山大道以南、长征南路以东、迎河以西、规划地块以北,项目用地面积约35亩,分两期建设,一期投资约12000万元,用地面积约20亩,设计污水处理量为6000吨/天,建筑面积约5000平方米;主要建设内容为高效
在广东省环境保护厅《南粤水更清行动计划(2017-2020年)》的背景下,南方某城镇污水处理厂亟需扩建及提标改造。该污水厂现状预留用地有限,因此,需考虑节省占地的污水处理工艺,如多段AO、曝气生物滤池、移动床生物膜反应器(MBBR)及膜生物反应器(MBR)工艺。本工程经过技术经济比选,采用MBBR及MBR组合工艺,
摘要:针对我国污水处理用地少、标准高、难稳定等问题,移动床生物膜工艺(MBBR)展现了节地、高效、灵活、稳定的工艺优势,获得了良好的应用效果,国内应用规模已达2500×104m3/d。MBBR工艺按微生物存在主要方式,分为泥膜复合MBBR工艺和纯膜MBBR工艺,分别隶属活性污泥法和生物膜法;同时纯膜MBBR耦合
近日,四川省人民政府发布了关于2021年度四川专利奖授奖的决定,中建环能申报的《一种MBBR磁性悬浮生物填料及其制备方法》项目荣获“2021年度四川专利奖”二等奖。该获奖专利是基于磁絮凝分离改进衍生出的迭代技术,为MBBR工艺创新优化而成的新型生物增效技术,在传统污水处理工艺上实现了新的变革,对
摘要:华北某新建处理规模为2×104m3/d的污水处理设施,面临占地受限、进水(含工业废水)水质复杂、出水水质要求高(需达到地表准V类标准)、需在4个月内通水达标等难题。采用BFM工艺为核心工艺,即纯膜MBBR工艺(B段)与改良磁加载沉淀工艺(M段),同时采用模块化设计,80d完成了设计施工,20d实现
摘要:上海某污水处理厂采用移动床生物膜反应器(MBBR)与传统厌氧/缺氧/好氧(A2O)耦合工艺进行提标改造,通过在原有A2O工艺的缺氧池和好氧池中投加悬浮填料,提高脱氮效率,出水水质执行国家一级A标准。填料挂膜半年后,分别测定A2O-MBBR和A2O系统中活性污泥的硝化和反硝化效能,发现前者的硝化速率
摘要:采用两级纯膜MBBR工艺处理低基质河道水,研究了启动过程中生物膜的硝化性能,并同步分析了生物膜厚度、生物量及微生物种群变化情况。结果显示,在冬季最不利水温条件下不接种污泥直接原水启动,经过10d系统调试成功,出水氨氮稳定达标,一、二级MBBR区出水氨氮分别为(1.35±0.38)、(0.43±0.1
目前,我国大部分城镇污水处理厂执行GB18918—2002标准中的一级A排放标准。为进一步改善水环境质量,满足污水资源化利用的发展需求,近年来北京、天津、安徽、江苏等地陆续出台了较《城镇污水处理厂污染物排放标准》(GB18918—2002)更加严格的流域或区域排放标准。2021年1月11日,国家发展改革委等10
摘要:悬浮载体有效比表面积(ESSA)的测定,对于准确设计悬浮载体投加量至关重要。采用生物法测定ESSA,以行业公认的K3型悬浮载体作为参比,将待测悬浮载体与K3置于相同条件下挂膜培养至稳定,通过稳定期各悬浮载体的处理性能并参比K3的表面负荷来测算ESSA。对于市面常见的6种不同类型悬浮载体,在低
一、什么是MBBR?MBBR工艺是运用生物膜法的基本原理,通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更
2025年1月9日,江苏中法水务股份有限公司与浙江日月集团就浙江日月光能科技有限公司光伏污水处理厂签署托管运维合同,负责该厂所有污水处理设备设施的运行维护,并确保排放达到国家及行业相关排放标准,该工业污水处理厂设计规模12000m3/d,是典型的新能源行业污水综合治理项目。此次项目的签约,是双
1月10日,江西抚州临川区城镇污水处理厂及配套管网二期建设项目EPC总承包中标结果公示。抚州市临川区城投建筑工程有限公司中标,中标价249862203.35元。临川区城镇污水处理厂及配套管网二期建设项目主要建设内容为:针对临川区高坪镇、温泉镇、东馆镇、腾桥镇、荣山镇、秋溪镇、龙溪镇共7个城镇生活污
1月9日,菏泽市水务局、市河湖流域工程管理服务中心、市建设工程质量服务中心及工程各参建单位代表和有关专家成立验收组到北控水务菏泽市第一污水处理厂提标及再生水回用项目开展竣工验收工作。菏泽市水务局党组成员、市河湖流域工程管理服务中心主任(正县级)刘军担任组长,菏泽区域公司总经理兼菏泽
2025年1月10日上午,新年伊始、寒风凛冽,宁夏水投盐池水务公司却是暖风扑面、喜气洋洋,一场股权收购签约仪式正在这里举行。签约仪式上,宁夏水投集团与桑德集团、盐池桑德水务有限公司分别签署协议,宁夏水投集团收购桑德集团持有的盐池桑德水务公司全部股权。这不仅标志着宁夏水投集团作为国有资本
1月10日,广东省郁南县城区第二污水处理厂及管网工程(一期)采购施工总承包中标候选人公示。第一中标候选人:青岛瑞源工程集团有限公司,投标总报价:110976160.64元;第二中标候选人:广东省基础工程集团有限公司,投标总报价:110684443.82元;第三中标候选人:广东建华盛建设工程有限公司,投标总
1月9日,浙江省海盐县城乡污水处理厂二期工程-工业污水厂至化工园区污水管廊项目工程总承包招标公告发布。本次招标以工程总承包的方式建设海盐县城乡污水处理厂二期工程-工业污水厂至化工园区污水管廊项目,包括施工图设计(含施工图深化)、工程所有材料设备的采购和保管、所有施工、管理、保修服务及
1月8日,山东梁山县第二污水处理厂工程特许经营项目(二次)招标公告发布。梁山县第二污水处理厂工程特许经营项目(二次),新建规模2.0万m3/d污水处理设施及配套管网,污水处理厂出水水质满足《地表水环境质量标准》(GB3838-2002)地表准IV类标准;新建中水回用管网,梁山县第二污水处理厂尾水湿地部
为深入推进减污降碳协同增效,河北省生态环境厅组织征集了一批减污降碳协同增效典型案例,旨在展示减污降碳协同创新实践和取得成效,提供可借鉴的经验做法。这些案例做法仅供参考借鉴,不作为相关企业开展其他生产经营活动的依据。今天,一起来看河北省减污降碳协同创新典型案例城镇污水集中处理行业典
1月7日,日喀则市住房和城乡建设局发布日喀则市污水处理厂三期建设项目市场测试公告。日喀则市污水处理厂三期建设内容:污水处理厂处理规模为3.0万m3/d,处理工艺采用AAO工艺方案;以及厂区主要构筑物及附属工程等。本工程建设项目总投资为14888.88万元。项目污泥处理采用浓缩机+板框压滤机的方式,脱
近日,生态环境部发布《2023年中国生态环境统计年报》。年报显示,2023年,开展排放源统计重点调查的工业企业共179236家,污水处理厂14620家(含日处理能力500吨以上的农村污水处理设施),生活垃圾处理场(厂)2843家(含餐厨垃圾集中处理厂),危险废物(医疗废物)集中处理2756家,储油库1177个。详
2024年12月31日,中国能建葛洲坝生态环保公司天津市污水处理重点项目——津沽污水处理厂三期扩建工程正式转入商业运行。该项目是天津市重点民生工程,是近五年来全国单体规模最大城市污水处理项目,总投资达38.07亿元,占地面积571.9亩,污水处理量高达45万吨/日。该项目体量大、技术水平高,工艺执行
【社区案例】求助一下出水氯离子含量过高影响COD测定该怎么办?在COD检测分析过程中,水样中Cl-极易被氧化剂氧化,大量的Cl-使得测定结果偏高,高氯低COD废水的测定更是现在面临的一个难题。在实际监测中发现,很多种废水如化工废水、味精废水、海产品加工废水等Cl-含量都很高,其COD测定需要对Cl-进行
在COD检测分析过程中,水样中Cl-极易被氧化剂氧化,大量的Cl-使得测定结果偏高,高氯低COD废水的测定更是现在面临的一个难题。在实际监测中发现,很多种废水如化工废水、味精废水、海产品加工废水等Cl-含量都很高,其COD测定需要对Cl-进行屏蔽后进行测定。
11年前,因铅酸蓄电池企业污染,江苏大丰50多名儿童血铅中毒,其中不乏10个月大的婴儿。这件事深深触动了李明强,也改变了他的人生轨迹。“我一辈子都会研究绿色动力电池,要让百姓用着放心。”英国学成归来的他立即加入大连理工大学,从事绿色动力电池研究,相继研制出高寿命镍锌电池、碘离子电池和溴
摘要:燃煤电厂脱硫废水中含有较高浓度的Cl-,过量的Cl-会影响脱硫效率、降低石膏品质、导致设备的腐蚀加剧,因此,Cl-的脱除是制约燃煤电厂废水零排放的关键因素。文章介绍了脱硫废水的组成特性,综述了化学沉淀法、吸附法、离子交换法、电解法、氧化法和萃取法等脱硫废水除氯技术的最新进展。在对脱
摘要:针对转炉干法除尘蒸发冷却器喷枪堵塞的问题,通过对堵塞物进行成分分析和水质化验分析,结合氯离子对碳钢管道的腐蚀机理,得出喷枪用水中氯离子严重超标,管道腐蚀加速导致锈层脱落,是堵塞喷枪喷头的根本原因,并由此提出一系列后续预防改进措施。1前言在转炉炼钢吹炼过程中,转炉中产生约1500
本文为于萍教授在2019中国工业水处理大会暨第39届年会上的演讲报告,从研究背景和研究意义入手,介绍了电催化氧化法降低水中氯离子浓度的试验原理及试验结果,并举例了该方法在几种类型水体中的应用。作者简介于萍,教授,博导。武汉大学化学与分子科学学院应用化学系主任,是《工业水处理》与《工业用
摘要:石灰石-石膏湿法脱硫系统中,氯离子浓度偏高是其常见问题。脱硫系统可通过投运废水系统降低浆液中氯离子含量,但进入冬季,电厂废水系统排放受限会直接影响脱硫石膏浆液氯离子指标控制。本文论述了脱硫吸收塔浆液氯离子浓度高对脱硫装置的影响,且通过投运废水系统无法达到快速降低氯离子浓度的
摘要:脱硫石膏的品质对减少污染、保护环境的意义重大,直接影响脱硫系统的经济运行指标。而吸收塔浆液氯离子浓度对石膏品质影响巨大,本文针对某电厂脱硫石膏氯离子含量高的危害情况进行分析,介绍了一系列常规调整手段,探讨出真空皮带脱水机换型改造、脱硫工业水水源改造、优化废水系统运行等方案,
0引言随着城市化进程的加快和人民生活水平的提高,我国城市生活垃圾的产生量迅速增加,垃圾处理的问题也越来越严峻。水泥窑协同处置城市生活垃圾是一种能实现减量化、无害化和资源化的方法,利用水泥窑特有的高温、长流程与碱性环境特点协同处置城市生活垃圾[1-2],能对各种腐蚀性、有毒性、易燃性、反
1.1有机硅防水剂对高氯脱硫石膏纸面石膏板粘接性能的影响掺加不同量有机硅防水剂后,石膏板在自然养护和标准养护条件下纸板的粘接性能分别见表2、表3。从表2、表3可以看出,掺加有机硅防水剂可以提高纸面石膏板的耐水性能,无论是在自然养护还是在标准养护条件下,随着防水剂掺量的增加,其纸板粘接性
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!