登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:臭氧催化氧化生物滤池是一种将臭氧氧化和生物活性炭的吸附降解作用联用的工业废水深度处理技术,主要分为两个处理单元:臭氧催化氧化处理系统和生物碳池滤池生化处理系统。通过臭氧预氧化的作用,改变废水生化特性,提高B/C比,通过活性炭吸附水中的溶解性有机物,并富集微生物,长出良好的生物膜,形成好氧生物降解作用。该技术虽然在有实际应用的工程案例,但还未在造纸行业中没有规模化使用,本次应用试验数据充分验证了臭氧催化氧化生物滤池基本满足造纸行业废水深度处理的要求。
关键词:臭氧催化氧化生物滤池;造纸行业废水;深度处理;应用试验
一、前言
芬顿(Feton)工艺在造纸行业污水深度处理中应用广泛,从使用效果来看,芬顿工艺处理的出水虽然能够达标排放,但存在着明显的缺点:一是药剂投加量较大,产生较多的污泥,增加运行的成本和污泥处理的难度;二是随着芬顿处理工艺大面积的使用,双氧水和硫酸亚铁的价格越来越高,订货难度越来越大;三是多种危险品的运输、储存和使用存在诸多的安全隐患。因此,需要寻找一种高效可靠的芬顿替代工艺进行验证性质的试验,为实施大规模工程应用提供科学、可行的数据指导。
催化氧化生物滤池系统作为有效的工业废水深度处理技术,是将臭氧氧化和生物活性炭的吸附降解作用联用的一种方法,包括了臭氧消毒、化学氧化、物理吸附和生物降解,主要分为两个处理单元:臭氧催化氧化处理系统和生物碳池滤池生化处理系统,并根据具体水质情况可进一步采用若干级。
该工艺首先利用臭氧预氧化作用,初步氧化分解水中的有机物及其他还原性物质,降低生物活性炭池的有机负荷,同时臭氧氧化能使水中难以生物降解的有机物断链、开环,转化为简单的脂肪烃,改变其生化特性,提高B/C比。臭氧除了自身能将某些有害有机物氧化成无害物外,还可以增加小分子的有机物,使活性炭的吸附功能得到更好的发挥。
活性炭能够迅速地吸收水中的溶解性有机物,同时也能富集微生物,使其表面能够生长出良好的生物膜,靠本身的充氧能力,炭床中的好氧微生物就能以有机物为养料大量的生长繁殖,使活性炭吸附的小分子有机物充分的降解。
二、试验目的
寻找一种高效可靠的芬顿替代工艺进行验证性质的试验,为实施大规模工程应用提高科学、可行的数据指导。
三、试验设计参数及工艺流程
1、试验规模
本次试验系统拟定水量:1m³/h,进行中试。
2、设计进出水水质
本次试验入水为纸厂二沉池出水,出水要求稳定达到造纸行业废水排放标准以下(CODCr≤60mg/l),考虑到稳定达标,试验设计出水值要求达到CODCr≤50mg/l。具体参数如下:
表3-1 进出水水质参数
3、工艺流程设计
针对造纸废水水质特点和进出水水质指标要求,试验主体工艺确定如下:原水→沉淀池(去除SS)→一级臭氧催化氧化→ 一级生物滤池→二级臭氧催化氧化→二级生物滤池。
4、试验设备参数
全系统总运行功率为7.9kw(不含臭氧机)
四、试验数据及分析
1、试验阶段
为充分论证不同臭氧浓度下造纸废水CODCr去除效率及造纸废水(二沉池出水)可生化性,比较不同工艺条件臭氧催化氧化生物滤池工艺的成本,并最终与芬顿工艺进行横向对比,将试验分成5个阶段。同时为模拟稳定运行情况,将每阶段试验时间定为7天。具体如下:
表4-1 试验阶段
2、数据分析
2.1、第一阶段
2.1.1、试验数据
表4-2 第一阶段试验数据统计表
2.1.2、数据分析
第一阶段沉淀池和臭氧机没有运行,从数据上看,系统来水CODCr浓度较高,平均为175mg/l,系统出水CODCr浓度平均为53.5mg/l,总平均去除值ΔCODCr为121.5mg/l,总平均去除效率为69.4%。
出水CODCr浓度未达到处理目标,但去除效果非常明显,表明目前的二沉池出水CODCr具有良好的可吸附性及一定的可生化性。
2.2、第二阶段
2.2.1、试验数据
表4-3 第二阶段试验数据统计表
2.2.2、数据分析
第二阶段系统正常运行,臭氧投加量为20+20mg/l,采用微孔曝气盘投加,平均进水CODCr浓度为169mg/l,平均出水CODCr浓度为60mg/l,还是未能满足设计指标;总CODCr去除浓度为109mg/l,CODCr总的去除效率为64.5%。
可以看出,臭氧的投加并未增加CODCr的去除效率,表明上第一阶段CODCr的高效去除率主要得益于生物滤池的吸附性能,此阶段的臭氧投加量还不足以充分打散大分子的有机物,还不能提高系统去除效率。
2.3、第三阶段
2.3.1、试验数据
表4-4 第三阶段试验数据统计表
2.3.2、数据分析
第三阶段增加臭氧投加量到30+30mg/l,共计投加60mg/l。可以看出,来水平均CODCr浓度未168mg/l,系统总的CODCr去除值为平均124mg/l,平均总的CODCr去除效率为73.8%,平均出水CODCr为44mg/l,满足试验要求(CODCr≤50mg/l)。
对比两级处理单元的CODCr去除情况,一级平均去除CODCr为66mg/l,二级平均去除CODCr为35mg/l,一级的去除效率明显高于二级,符合越往后CODCr越难降解的判断。
对比ΔCODCr(124mg/l)数值与臭氧投加量(30+30mg/l),可以得出如下结论:每投加1mg/l的臭氧,可以去除的CODCr约为2mg/l。
2.4、第四阶段
2.4.1、试验数据
表4-5 第四阶段试验数据统计表
2.4.2、数据分析
第四阶段中二沉池出水较为平稳,臭氧投加量稳定在35+35mg/l,系统平均总的CODCr去除值为121mg/l,平均总的CODCr去除效率为80.1%,平均出水CODCr为30mg/l,满足试验要求(CODCr≤50mg/l)。
本试验阶段中,出水CODCr值已经远低于50mg/l,说明了臭氧催化氧化生物滤池的系统处理能力能够满足造纸行业深度处理的要求,有较大的空间来应对污水处理的系统波动,能够启动抗系统冲击负荷的作用。
2.5、第五阶段
2.5.1、试验数据
表4-6 第五阶段试验数据统计表
2.5.2、数据分析
第五阶段属于系统优化阶段,流量提升到1000l/h,臭氧投加量按照O3:ΔCODCr=1:2的比例。平均总的臭氧投加量为50mg/l(第一级平均为30mg/l,第二级平均为20mg/l),系统总的CODCr平均去除浓度为97mg/l,去除效率为69.3%,出水平均CODCr浓度为43mg/l,满足试验要求(CODCr≤50mg/l)。
五、试验结论
1、臭氧催化氧化生物滤池工艺可以有效的去除二沉池出水的CODCr,能够满足造纸行业废水深度出来的要求。
2、臭氧催化氧化生物滤池系统具有较强的系统缓冲能力,能够通过控制加药量来应对污水运行的波动,有较好的抗冲击负荷的能力。
3、系统可以实现全自动运行模式,所需的化工辅料(PAC、PAM和臭氧)均能实现自动化投加,相对于芬顿深度处理工艺来讲少一个人工溶解化工辅料的过程,可以省人工。
4、臭氧催化氧化生物滤池工艺无需用到浓硫酸、液碱、双氧水、硫酸亚铁等强酸强碱和强腐蚀性化工辅料,但需要做好管控,防止臭氧泄漏,可以降低现场安全风险,改善工作环境。
5、试验中,系统每投加1mg/l的臭氧,可去除约2mg/l的CODCr。
6、经过吨水电耗和药耗比较,臭氧工艺与芬顿深度处理成本相当,但所需的化工辅料较易制得,不需要远程调货,便于企业管理,可作为造纸行业深度处理的选择工艺。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,国家工信部发布关于开展2024年工业废水循环利用典型案例征集工作的通知,聚焦钢铁、石化化工、纺织、造纸、食品等重点行业以及数据中心等重点领域,面向工业企业、园区征集一批废水循环利用典型案例。工业和信息化部办公厅关于开展2024年工业废水循环利用典型案例征集工作的通知工信厅节函〔2024
造纸业在国民经济中占有重要位置,位居工业行业废水排放量的第3位。仅次于我国化工与钢铁行业,造纸行业会产生很多的废水污水,废水中的有机物占据我国国内工业废水有机物总量的25%,对自然生态环境产生了很严重的影响,所以必须要减少造纸行业排放的污水,从而实现造纸废水的零排放。现存问题:目前造
中国水务行业自改革开放以来,取得了举世瞩目的成就。如2010年,我国城镇供水能力约为2.5亿立方米/日,污水处理能力1.28亿立方米/日;截至2019年底,全国日供水量突破3.1亿立方米/日、供水管道长度超过180万公里,全国污水处理能力超过2亿立方米/日、排水管道长度超过110万公里,初步形成了“180+3”的
山西阳光集团安仑化工有限公司依托创新开发建设的工业高盐浓水深度处理系统,实现工业废水零排放目标。安仑化工有限公司是以煤焦油深加工、炭黑生产为主的新能源工业企业。公司建设之初,就坚持“高标准、高起点”,配套引进了国内先进水平的工业废水处理技术装备。按照“雨污分流、清污分流、分质处理
曹国民教授在2019中国工业水处理大会暨第39届年会上的演讲PPT,针对我国工业废水处理现状以及面临的主要问题,介绍了高级氧化技术及其在废水深度处理与回用工程中的应用。作者简介曹国民,博士,教授,注册环保工程师,华东理工大学环境工程研究所所长。中国环境科学学会水处理与回用专业委员会委员,
摘要:水是人们生活中必不可少的重要资源。在以往的工业发展中,长期实施粗放式废水处理方法,其具有排放量大、利用率低的特点,排放中还会有众多毒害物质对水资源造成污染。基于此,本文将分析工业废水深度处理概念,探究膜技术在工业废水深度处理中的应用,旨在提高水资源利用率,广泛推行回用水政策
当前,全球都面临着水资源短缺、水质恶化的严峻形势,水污染问题成为当今世界面临的重要环境问题之一。我国人均水资源占有量仅为0.24万m,只有世界上人均占有量的1/4,属世界十二个贫水国家之一,所以加强对新污染源的控制,改善老污染源处理条件,才能从根本上改变我国水质恶化的现状。今天,我们跟大
关键词:工业废水;深度处理;活性炭吸附法;膜分离法引言工业废水指的是进行工业生产的过程当中产生的废水、污水或者是废液,其中含有随着水流失进来的工业生产的用料、产品以及生产过程当中产生的一些污染物。环境水污染是一个全球性的问题,世界性的水资源缺乏的危机也越来越严重,水污染严重的程度
各有关单位:生态文明建设是党的十八大建设中国特色社会主义事业的总体布局,为此国务院制定了《水污染防治行动计划》(水十条),其中狠抓工业污染防治列为第一条,明确指出了专项整治的十大重点行业,强调集中治理工业集聚区水污染,提出了推动污染企业退出机制。尤其是《中华人民共和国环境保护税法》
各有关单位:生态文明建设是党的十八大建设中国特色社会主义事业的总体布局,为此国务院制定了《水污染防治行动计划》(水十条),其中狠抓工业污染防治列为第一条,明确指出了专项整治的十大重点行业,强调集中治理工业集聚区水污染,提出了推动污染企业退出机制。尤其是《中华人民共和国环境保护税法》
2023年,博世科成功签约土耳其某纸业PM6项目废水处理项目,实现了在土耳其市场零的突破,近期,公司派遣骨干团队“走进”土耳其,高效推进项目实施、拓展市场业务,扩大绿色一带一路朋友圈。土耳其某纸业PM6项目采用最先进的纸机工艺技术。依托在制浆废水处理领域的技术及实力,博世科成为该项目生产废
近日,博奇环保成功签约山东博汇纸业制浆、造纸废水处理EPC总承包项目,本项目是近年国内制浆、造纸废水处理领域最大体量的技改总包项目。山东博汇纸业股份有限公司是一家集纸张的研发、生产、销售于一体的A股上市公司,主要产品有“博汇”烟卡、涂布白卡纸、书写纸、牛皮箱板纸等。本次承接的博汇项目
废纸造纸制浆和造纸过程中会产生大量废水,该废水具有COD和SS含量高,可生化性相对较差的特点,若不能进行有效处理,将对水环境造成严重的污染。另外,随着国家对造纸废水排放标准特别是直排要求的提高,造纸废水的处理问题受到了越来越广泛的关注。目前,对于造纸废水最常用的处理技术是以生化处理为
制浆造纸工业是国民经济的重要组成部分,也是水污染物排放量较大的行业。根据目前制浆工艺的生产水平,生产1t纸浆,需耗费1.2~2t原木片,产生60~100m的废水。其产生的废水水质、水量与生产工艺、原料、产品种类等密切相关。一般来说,造纸废水中的主要污染物有4类:(1)还原性物质,如木素、无机盐等
造纸业在国民经济中占有重要位置,位居工业行业废水排放量的第3位。仅次于我国化工与钢铁行业,造纸行业会产生很多的废水污水,废水中的有机物占据我国国内工业废水有机物总量的25%,对自然生态环境产生了很严重的影响,所以必须要减少造纸行业排放的污水,从而实现造纸废水的零排放。现存问题:目前造
嘉兴市造纸行业全部以废纸为主要原料,年产量600多万吨,废水排放量位居嘉兴市工业行业第二,是工业污染深度削减的重点行业。针对造纸行业废水存在排放量大、废水回用处理过程中容易形成离子累积的堵点、造纸污泥利用和处置效率低等问题,浙江大学牵头承担的“十三五”水专项嘉兴项目“平原河网地区污
造纸是与国民经济密切相关的产业,也是世界范围内水污染治理的重点行业。目前对于造纸废水环境危害的治理仅局限在消除COD、BOD、悬浮物和色度等常规废水处理指标。但研究发现,造纸废水中含有微量有毒污染物,特别是多环芳烃(PAHs)和无氯苯酚(PCP)等持久性有毒有害有机污染物。这些污染物给生态环
用铁碳微电解联合过硫酸盐深度处理造纸废水,考察了反应时间、初始pH、铁碳质量比、铁碳总投加量、过硫酸盐(PS)投加量等因素对处理效果的影响,并对不同体系下的废水处理效果进行比较。结果表明:铁碳微电解联合过硫酸盐工艺能够有效深度处理造纸废水,在反应时间为150min、pH=5、m(Fe0):m(AC)=
中国环境科学研究院、浙江大学等单位联合承担的水专项“十三五”“嘉兴市水污染协调控制与水源地质量改善”项目(以下简称嘉兴项目)自2017年启动以来,历经两年的技术攻关和示范应用,在污染源深度削减、嘉兴智慧环保建设等方面取得阶段性成果,为嘉兴作为生态文明建设示范市创建“十大攻坚行动”方案
摘要:我国造纸废水产生量大,占工业废水总量有较大的比例,且其含有较多的污染物物质,及较高的污染物浓度,直接排放或处理达标将对环境产生较大污染。本文分析了废纸造纸废水的主要来源和废水水质特点,并针对该类废水的污染特性,总结和评价了各类治理技术措施,提出经济可行的处理工艺,希望能够促
目前,我国大部分城镇污水处理厂执行GB18918—2002标准中的一级A排放标准。为进一步改善水环境质量,满足污水资源化利用的发展需求,近年来北京、天津、安徽、江苏等地陆续出台了较《城镇污水处理厂污染物排放标准》(GB18918—2002)更加严格的流域或区域排放标准。2021年1月11日,国家发展改革委等10
造纸业在国民经济中占有重要位置,位居工业行业废水排放量的第3位。仅次于我国化工与钢铁行业,造纸行业会产生很多的废水污水,废水中的有机物占据我国国内工业废水有机物总量的25%,对自然生态环境产生了很严重的影响,所以必须要减少造纸行业排放的污水,从而实现造纸废水的零排放。现存问题:目前造
有关臭氧处理工艺的总结,大家一起来学习吧!臭氧催化氧化技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。臭氧催化氧化技术按催化剂的相态分为均相臭氧催化氧化技术和多相臭氧催化氧化技术,在均相臭氧催化氧化技术技术
1、工程概况在现有生化废水系统出水的水质基础上将COD指标降低至80mg/L以下(目前运行状态下COD指标150mg/L以下,生化废水系统出水水量小于250m3/h,从源头上降低污染物排放总量,减轻后续工艺负荷。深度氧化段要求采用臭氧催化氧化工艺或电化学工艺,不允许产生废液、固废及危废。建设规模:处理量250
摘要:在介绍臭氧氧化技术处理印染废水原理的基础上,着重阐述了臭氧催化氧化、臭氧-超声、臭氧-紫外和臭氧-微电解联合技术处理印染废水的进展,并探讨了未来印染废水处理的研究方向。我国是纺织印染大国,由此产生的印染废水总量大、环境污染严重,制约着整个行业的持续发展[1]。印染过程中多使用苯
摘要:随着各地方政府污染物排放标准的发布,污水处理厂均面临着提标改造的问题。即使是市政污水处理厂,有时来水也会混入一定比例的工业废水,使得原水组分比较复杂,难降解有机物含量较高,这对污水处理厂提标改造中CODCr达标造成很大的困难。本文通过阐述臭氧氧化技术及臭氧催化氧化技术在水处理深
随着我国新一轮产业结构调整和生态化、环保型工业化模式的发展,我国化工企业不断向工业园区聚集发展。这些化工园区往往涉及医药中间体、化工原料、纺织印染、造纸以及其他精细化工行业。化工园区内各企业产生的废水经过自身污水处理站预处理后,统一排放进入园区污水处理厂进一步处理。这类废水具有成
煤化工是我国重要基础工业和重点污染行业。煤焦化过程产生含有大量有毒有害物质的焦化废水,其主要污染物为氨氮、氰化物、硫化物、苯系物、酚类、杂环化合物和多环化合物等。目前,焦化废水处理工艺主要为萃取脱酚一蒸氨一气浮除油一A/O生化一混凝。随着国家和地方污水排放标准的日益严格,采用现有工
昨天,北极星节能环保网为大家介绍了《2015年国家先进污染防治示范技术名录(水污染治理领域)》中的《电磁切变场强化臭氧氧化污水深度处理技术典型应用案例》,今天继续为大家介绍该名录中的《臭氧催化氧化法制药废水深度处理技术典型应用案例》,内容如下:案例名称:吉林榆树帝斯曼药业3000t/d抗生素
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!