登录注册
请使用微信扫一扫
关注公众号完成登录
2022-04-28 08:32来源:工业水处理作者:吴芳磊 等关键词:造纸废水工业水污染物Fenton氧化工艺收藏点赞
我要投稿
废纸造纸制浆和造纸过程中会产生大量废水,该废水具有COD和SS含量高,可生化性相对较差的特点,若不能进行有效处理,将对水环境造成严重的污染。
另外,随着国家对造纸废水排放标准特别是直排要求的提高,造纸废水的处理问题受到了越来越广泛的关注。
目前,对于造纸废水最常用的处理技术是以生化处理为主体的三级处理技术。
1 项目介绍
浙江省某制浆造纸企业以生产瓦楞纸和纱管纸为主,该企业车间产生的废水和生活用水经管道收集后直接排入污水处理站进行处理。污水处理站设计规模为3 000 m3/d,实际进水量为2 000~2 800 m3/d,出水水质执行《制浆造纸工业水污染物排放标准》(GB 3544—2008)中表3水污染物特别排放标准。
1.1 工艺流程
该污水处理站预处理采用混凝沉淀处理工艺,生化系统采用三段式好氧生化处理工艺,深度处理采用Fenton氧化工艺。
预处理主要是去除废水中的SS,如纤维、胶料、涂料和化学药剂残渣等,保证后续生化系统的稳定运行,同时可以去除20%左右的COD。
混凝沉淀工序出水分段进入第1段和第2段生化池(第1段生化池进水水量和第2段生化池进水水量按7∶3进行调配),第1段生化池出水进入第2段生化池继续处理,第2段生化池出水再进入第3段生化池进行进一步处理。
三段好氧生化均以推流式活性污泥法为主体工艺,主要针对进水中的高COD进行去除;由于进水营养比例的失衡,需向生化池不断补充氮肥、磷肥以保证微生物的正常生长和活性。深度处理采用Fenton高级氧化技术,进一步去除难降解COD,保证出水水质达标。该污水处理站工艺流程见图1。
1.2 进出水水质
由于2种纸的生产工艺和原料有所不同,且受市场需求影响,车间生产不断调整,造成来水水质波动较大。进出水水质如表1所示。出水水质执行《制浆造纸工业水污染物排放标准》(GB 3544—2008)中表3水污染物特别排放标准。
1.3 运行问题分析
综合污水站进水水质及出水标准,污水站对于废水处理的主要难点在于COD的稳定去除。受进水水质波动,以及应用回用水造成难降解物质在系统中累积的影响,三段生化出水COD经常发生波动。目前运行的各段生化系统出水COD的变化如图2所示。
由图2可知,第1段出水COD在1419~2545 mg/L之间,平均值为1 972 mg/L;第2段出水COD在1 082~2 260 mg/L之间,平均值为1 663 mg/L;第3段出水COD在184~376 mg/L之间,平均值为283 mg/L。
而Fenton设计进水COD为300 mg/L,Fenton进水COD超过300 mg/L,不仅造成处理费用急剧升高,而且会导致Fenton处理出现异常,存在出水COD超标风险。
2 生物处理强化措施及效果
为保障最终出水COD稳定达标,并有效降低运行成本,在不增加新的处理设施的前提下,充分挖掘现有生物系统运行空间,依次从进水方式、DO控制、污泥回流方式、污泥龄等方面分阶段进行了优化调整。
2.1 调整进水方式及DO控制
原设计进水方式为混凝沉淀工序出水分段进入第1段和第2段生化池(第1段生化池进水水量和第2段生化池进水水量按7∶3进行调配),最后经由第2段生化池进入第3段生化池进行进一步处理。第1阶段调整首先将分段进水改为混凝沉淀工序出水全部进入第1段生化池进行处理,第1段生化处理出水进入第2段生化池进行处理,第2段生化处理出水再进入第3段生化池进行处理。
此项调整措施可保证三段各自独立的生物反应过程和不同的微生物生态反应系统,有利于培养各段进水特性条件下的专性微生物,从而提高生物去除效率。
同时,对原有DO控制策略进行了调整。原有运行方式中,各段生化池DO控制在2~2.5 mg/L左右。DO调整措施:将现有工频风机改为变频控制,并加设溶解氧自动控制系统,将第1、2段DO控制在0.3~0.8 mg/L左右,使第1、2段生化系统处于微氧状态。
微氧条件下同一个系统内可实现厌氧、缺氧及好氧环境的共存,可以丰富微生物群落,提高微生物多样性,而且微环境驯化出的混合微生物群落能更有效地对难降解有毒污染物进行脱毒降解,进而提高难降解污染物的去除效率。第3段生化系统DO控制在2 mg/L左右,以保障出水氨氮稳定达标。第1阶段调整后,各生化段的出水COD的变化如图3所示。
由图3可以看出,第1段生化处理出水COD在1 786~2 767 mg/L之间,平均值为2 335 mg/L;第2段生化处理出水COD在852~1 339 mg/L之间,平均值为1 114 mg/L;第3段生化处理出水COD在150~229 mg/L之间,平均值为192 mg/L。
调整后第1段生化处理出水平均COD较调整之前有所上升,这主要是因为进水方式调整后,第1段生化系统接受的进水COD负荷较高,且第1段生化池通过溶解氧的控制变成了预酸化池,其具有水解酸化的功能,可将大分子物质转化成小分子物质,将环状结构转化为链状结构,进一步提高了废水的可生化性,为后续厌氧或好氧处理创造了良好的条件,而不是大幅降低COD。第2段生化处理出水平均COD较调整之前下降了33%,第3段生化处理出水平均COD较调整之前下降了32%,调整后效果明显。
2.2 调整污泥回流方式
经第1阶段调整出水稳定后,进行第2阶段优化调整,主要是针对污泥回流方式。
原生化系统污泥回流方式为第1段沉淀池回流污泥回流至第1段生化池,第2段沉淀池回流污泥回流至第2段生化池,第3段沉淀池回流污泥回流至第3段生化池。
在第1次调整后,各段生化池保持独立,各自富集降解不同进水水质的微生物,第1段微生物降解的COD中大部分为易降解的COD,第2段微生物降解的COD中含有部分不易降解的COD,第3段微生物基本上降解的是难降解COD。
污泥回流方式调整措施:保持第1段沉淀池污泥回流方式不变,第2段沉淀池回流污泥调整为一部分回流至第2段生化池,另一部分回流至第1段生化池,第3段沉淀池回流污泥调整为一部分回流至第3段生化池,另一部分回流至第2段生化池。
通过错位回流方式,向第1段和第2段生化池内分别引进能够降解难降解COD的菌群,强化第1段和第2段生化池对难降解COD的降解能力。第2阶段调整后,各生化段的出水COD的变化如图4所示。
由图4可以看出,第1段生化处理出水COD在1 622~2 485 mg/L之间,平均值为2 156 mg/L,较第1次调整后下降7.7%;第2段生化处理出水COD在604~1 100 mg/L之间,平均值为826 mg/L,较第1次调整后下降25.8%;第3段生化处理出水COD在135~184 mg/L之间,平均值为160 mg/L,较第1次调整后下降16.7%。
可以看出,通过强化第1、2段降解难降解COD的菌群的培养,其COD去除效果明显增强,特别是第2段生化系统的强化效果更为明显。
2.3 调整污泥龄
由于污水站来水中氮、磷含量不高,对于脱氮除磷没有特别要求,一般需要往生化系统中投加氮、磷,故原系统设计运行的各生化段的污泥龄一直保持在10 d左右。有研究表明,延长泥龄,会使活性污泥颗粒的 Zeta 电位绝对值降低,污泥表面疏水性增强,导致 DLVO总位能下降,从而有利于污泥的絮凝,表现在出水浊度的降低。
针对造纸废水絮凝性能较差,特别是三段生化出水中经常带有细小悬浮物,影响后续深度处理的处理效果,可以考虑适当延长污泥龄,这将有利于降低出水浊度;而且泥龄越长,微生物种群的丰度越大,有利于提高对难降解COD的去除率。
由于第1、2段进水负荷高,调整较长污泥龄可能不利于COD的去除,所以第3阶段主要针对第3段生化池的污泥龄进行调整,将污泥龄逐步由10 d调整至30 d。第3阶段调整后,第3段生化处理的出水COD的变化如图5所示。
由图5可知,第3段生化处理出水COD在80~160 mg/L之间,平均值为118 mg/L,较第2次调整下降26.2%,效果明显。
据类似的针对造纸废水处理的报道,经过生化系统处理后的出水COD基本在211~370 mg/L之间,在此基础上进入后续深度处理。
而对于本研究,强化生化系统处理前,生化系统出水COD在184~376 mg/L之间,而调整后生化系统出水COD明显下降。生化处理出水经Fenton进一步处理,最终出水COD在15~35 mg/L之间,稳定达到排放标准。
3 运行成本优化核算
对生化系统优化调整后,污水处理站运行成本在电费和Fenton处理药剂费方面均有下降。电费下降主要体现在对曝气的控制,现有运行方式下电耗下降0.22元/t;由于Fenton进水COD大幅下降,除调节酸碱药剂用量变化不大,双氧水和硫酸亚铁的用量大幅减小,经核算,改进前Fenton处理成本约为5.61元/t,改进后约为2.56元/t。
4 结 论
针对原处理工艺存在的问题,利用污水站的现有条件,对原运行系统进行了3次优化调整:
(1)将第1、2段好氧生化系统通过曝气控制为微氧环境,使第1、2段生化池具有水解酸化的功能,提高了对难降解物质的去除率;
(2)进行明确的分级处理加上错位回流,使得各段能够针对其进水水质培养各自独立高效的活性污泥系统;
(3)延长污泥龄,富集种群更加丰富的微生物种类,提高对难降解COD的去除率,并增强活性污泥絮凝效果,降低出水浊度。
通过以上措施的叠加,强化了生化系统降解难降解COD的能力。优化调整后的运行结果表明,总体运行效果良好,生化处理出水COD下降了58.3%,运行过程中第3段生化出水COD也极少出现超过300 mg/L的情况,满足了后续Fenton处理进水要求,最终处理出水COD在15~35 mg/L之间,出水稳定达到排放标准。在不新增处理工艺或者扩建的情况下,不仅保障了出水COD 的稳定,且降低了电耗和Fenton处理费用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2023年,博世科成功签约土耳其某纸业PM6项目废水处理项目,实现了在土耳其市场零的突破,近期,公司派遣骨干团队“走进”土耳其,高效推进项目实施、拓展市场业务,扩大绿色一带一路朋友圈。土耳其某纸业PM6项目采用最先进的纸机工艺技术。依托在制浆废水处理领域的技术及实力,博世科成为该项目生产废
近日,博奇环保成功签约山东博汇纸业制浆、造纸废水处理EPC总承包项目,本项目是近年国内制浆、造纸废水处理领域最大体量的技改总包项目。山东博汇纸业股份有限公司是一家集纸张的研发、生产、销售于一体的A股上市公司,主要产品有“博汇”烟卡、涂布白卡纸、书写纸、牛皮箱板纸等。本次承接的博汇项目
制浆造纸工业是国民经济的重要组成部分,也是水污染物排放量较大的行业。根据目前制浆工艺的生产水平,生产1t纸浆,需耗费1.2~2t原木片,产生60~100m的废水。其产生的废水水质、水量与生产工艺、原料、产品种类等密切相关。一般来说,造纸废水中的主要污染物有4类:(1)还原性物质,如木素、无机盐等
造纸业在国民经济中占有重要位置,位居工业行业废水排放量的第3位。仅次于我国化工与钢铁行业,造纸行业会产生很多的废水污水,废水中的有机物占据我国国内工业废水有机物总量的25%,对自然生态环境产生了很严重的影响,所以必须要减少造纸行业排放的污水,从而实现造纸废水的零排放。现存问题:目前造
嘉兴市造纸行业全部以废纸为主要原料,年产量600多万吨,废水排放量位居嘉兴市工业行业第二,是工业污染深度削减的重点行业。针对造纸行业废水存在排放量大、废水回用处理过程中容易形成离子累积的堵点、造纸污泥利用和处置效率低等问题,浙江大学牵头承担的“十三五”水专项嘉兴项目“平原河网地区污
造纸是与国民经济密切相关的产业,也是世界范围内水污染治理的重点行业。目前对于造纸废水环境危害的治理仅局限在消除COD、BOD、悬浮物和色度等常规废水处理指标。但研究发现,造纸废水中含有微量有毒污染物,特别是多环芳烃(PAHs)和无氯苯酚(PCP)等持久性有毒有害有机污染物。这些污染物给生态环
用铁碳微电解联合过硫酸盐深度处理造纸废水,考察了反应时间、初始pH、铁碳质量比、铁碳总投加量、过硫酸盐(PS)投加量等因素对处理效果的影响,并对不同体系下的废水处理效果进行比较。结果表明:铁碳微电解联合过硫酸盐工艺能够有效深度处理造纸废水,在反应时间为150min、pH=5、m(Fe0):m(AC)=
中国环境科学研究院、浙江大学等单位联合承担的水专项“十三五”“嘉兴市水污染协调控制与水源地质量改善”项目(以下简称嘉兴项目)自2017年启动以来,历经两年的技术攻关和示范应用,在污染源深度削减、嘉兴智慧环保建设等方面取得阶段性成果,为嘉兴作为生态文明建设示范市创建“十大攻坚行动”方案
摘要:臭氧催化氧化生物滤池是一种将臭氧氧化和生物活性炭的吸附降解作用联用的工业废水深度处理技术,主要分为两个处理单元:臭氧催化氧化处理系统和生物碳池滤池生化处理系统。通过臭氧预氧化的作用,改变废水生化特性,提高B/C比,通过活性炭吸附水中的溶解性有机物,并富集微生物,长出良好的生物
摘要:我国造纸废水产生量大,占工业废水总量有较大的比例,且其含有较多的污染物物质,及较高的污染物浓度,直接排放或处理达标将对环境产生较大污染。本文分析了废纸造纸废水的主要来源和废水水质特点,并针对该类废水的污染特性,总结和评价了各类治理技术措施,提出经济可行的处理工艺,希望能够促
河南省生态环境厅制定《啤酒工业水污染物排放标准》,并公开征求意见。本文件规定了啤酒工业企业水污染物排放控制、监测监控以及实施与监督要求。适用于现有啤酒工业企业水污染物的排放管理,新(改、扩)建啤酒工业企业的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后
为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,落实《电子工业水污染物排放标准》管控要求,防治环境污染,推动电子工业水污染防治技术进步,生态环境部发布《电子工业水污染防治可行技术指南》(HJ1298—2023)(以下简称《指南》),近日正式实施。我国是电子信息制造业大国。
10月10日,遵义市公共资源交易中心发布了仁怀市石坝河污水处理厂建设工程中标公示,鹏凯环境科技股份有限公司以172590717.88元中标该项目,工期365天。仁怀市石坝河污水处理厂建设项目位于仁怀市茅台镇上坪村,项目采用工程施工-采购-运营总承包(PC+O)建设模式。项目占地面积51.01亩,建筑面积2357平
6月8日,生态环境部对外正式发布国家生态环境标准《电子工业水污染防治可行技术指南》,本标准提出了电子工业水污染防治可行技术。除本标准所列的水污染防治可行技术外,其他可实现电子工业水污染物稳定达标排放的水污染防治技术,也可作为企业技术选择的参考。标准自2023年7月1日起实施。关于发布国家
2022年9月26日,经江苏省人民政府批准,省生态环境厅与省市场监督管理局联合发布《酿造工业水污染物排放标准》(DB32/4384-2022)(以下简称《标准》)。《标准》对酿造工业水污染物的排放做了哪些规定?让我们一起来了解一下。问:为什么要制订这项标准?答:我省酿造工业发达,为有效管控酿造工业排
10月8日,江苏省市场监督管理局发布江苏省地方标准DB32/4384-2022《酿造工业水污染物排放标准》,DB32/4384-2022《酿造工业水污染物排放标准》。本文件规定了酿造工业企业水污染物的排放控制要求、监测要求、实施与监督要求。本文件适用于现有和新建酿造工业企业的水污染物排放管理,以及酿造工业建设
制革是我国轻工行业的支柱产业之一,在国民经济建设和出口创汇中发挥着重要作用,也是对畜牧业副产品——生皮进行资源化利用的最有效途径,是发展循环经济的经典范例[1-2]。经过多年的快速发展,我国已成为世界主要的制革产区,但传统制革工艺产生的废水也造成了较严重的环境问题。制革废水具有成分复
6月9日,四川省古蔺郎酒厂(泸州)有限公司和泸州市兴泸污水处理有限公司在郎酒泸州产区举行“酒类废水协商处理协议签约仪式”。市生态环境局、市城管执法局和龙马潭区有关部门负责人受邀参加仪式,市酒业发展局副局长王勇主持并致辞。王勇强调,郎酒泸州产区酿酒废水协商排放正式签约,对于全市酒业来
央视“3·15晚会”曝光的“土坑酸菜”余波不断,不仅让消费者对手中的酸菜泡面短期内再也爱不起来,也“逼”得主营酸菜鱼品类的餐饮企业“连夜发声”,公布食材供应链以及质量检测报告。一时间,酸菜激起千层浪。“土坑酸菜”是如何“练成”的作为传统美食,酸菜或者泡菜,在大江南北都拥有广泛的热爱
3月2日,国家标准《农药工业水污染物排放标准(二次征求意见稿)》征求意见。农药行业废水末端处理通常包括预处理和综合处理两大步骤,综合处理大多是采用生化处理,这两步需要进行多工序组合,才能实现达标排放。只有生物类农药主要通过发酵方式生产,可以简单处理后即进入生化。而化学合成农药的工艺
[摘要]采用活性炭吸附-Fenton氧化,研究不同工艺参数对COD去除率的影响效果。研究结果表明:活性炭吸附实验的最佳条件是在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60min,COD为131.9mg/L,COD的去除率最高,为16.8%,色度的去除率为46.7%;经过活性炭预处理之后,再进行Fenton氧化实验的最佳条件是废
高级氧化工艺(AdvancedOxidationProcesses,简称AOPS)是20世纪80年代开始形成的处理有毒污染物技术,它的特点是通过反应产生羟基自由基(·OH),该自由基具有极强的氧化性,通过自由基反应能够将有机污染物有效的分解,甚至彻底的转化为无害的无机物,如二氧化碳和水等。由于高级氧化工艺具有氧化性
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!