登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 进出水水质
由于2种纸的生产工艺和原料有所不同,且受市场需求影响,车间生产不断调整,造成来水水质波动较大。进出水水质如表1所示。出水水质执行《制浆造纸工业水污染物排放标准》(GB 3544—2008)中表3水污染物特别排放标准。
1.3 运行问题分析
综合污水站进水水质及出水标准,污水站对于废水处理的主要难点在于COD的稳定去除。受进水水质波动,以及应用回用水造成难降解物质在系统中累积的影响,三段生化出水COD经常发生波动。目前运行的各段生化系统出水COD的变化如图2所示。
由图2可知,第1段出水COD在1419~2545 mg/L之间,平均值为1 972 mg/L;第2段出水COD在1 082~2 260 mg/L之间,平均值为1 663 mg/L;第3段出水COD在184~376 mg/L之间,平均值为283 mg/L。
而Fenton设计进水COD为300 mg/L,Fenton进水COD超过300 mg/L,不仅造成处理费用急剧升高,而且会导致Fenton处理出现异常,存在出水COD超标风险。
2 生物处理强化措施及效果
为保障最终出水COD稳定达标,并有效降低运行成本,在不增加新的处理设施的前提下,充分挖掘现有生物系统运行空间,依次从进水方式、DO控制、污泥回流方式、污泥龄等方面分阶段进行了优化调整。
2.1 调整进水方式及DO控制
原设计进水方式为混凝沉淀工序出水分段进入第1段和第2段生化池(第1段生化池进水水量和第2段生化池进水水量按7∶3进行调配),最后经由第2段生化池进入第3段生化池进行进一步处理。第1阶段调整首先将分段进水改为混凝沉淀工序出水全部进入第1段生化池进行处理,第1段生化处理出水进入第2段生化池进行处理,第2段生化处理出水再进入第3段生化池进行处理。
此项调整措施可保证三段各自独立的生物反应过程和不同的微生物生态反应系统,有利于培养各段进水特性条件下的专性微生物,从而提高生物去除效率。
同时,对原有DO控制策略进行了调整。原有运行方式中,各段生化池DO控制在2~2.5 mg/L左右。DO调整措施:将现有工频风机改为变频控制,并加设溶解氧自动控制系统,将第1、2段DO控制在0.3~0.8 mg/L左右,使第1、2段生化系统处于微氧状态。
微氧条件下同一个系统内可实现厌氧、缺氧及好氧环境的共存,可以丰富微生物群落,提高微生物多样性,而且微环境驯化出的混合微生物群落能更有效地对难降解有毒污染物进行脱毒降解,进而提高难降解污染物的去除效率。第3段生化系统DO控制在2 mg/L左右,以保障出水氨氮稳定达标。第1阶段调整后,各生化段的出水COD的变化如图3所示。
由图3可以看出,第1段生化处理出水COD在1 786~2 767 mg/L之间,平均值为2 335 mg/L;第2段生化处理出水COD在852~1 339 mg/L之间,平均值为1 114 mg/L;第3段生化处理出水COD在150~229 mg/L之间,平均值为192 mg/L。
调整后第1段生化处理出水平均COD较调整之前有所上升,这主要是因为进水方式调整后,第1段生化系统接受的进水COD负荷较高,且第1段生化池通过溶解氧的控制变成了预酸化池,其具有水解酸化的功能,可将大分子物质转化成小分子物质,将环状结构转化为链状结构,进一步提高了废水的可生化性,为后续厌氧或好氧处理创造了良好的条件,而不是大幅降低COD。第2段生化处理出水平均COD较调整之前下降了33%,第3段生化处理出水平均COD较调整之前下降了32%,调整后效果明显。
2.2 调整污泥回流方式
经第1阶段调整出水稳定后,进行第2阶段优化调整,主要是针对污泥回流方式。
原生化系统污泥回流方式为第1段沉淀池回流污泥回流至第1段生化池,第2段沉淀池回流污泥回流至第2段生化池,第3段沉淀池回流污泥回流至第3段生化池。
在第1次调整后,各段生化池保持独立,各自富集降解不同进水水质的微生物,第1段微生物降解的COD中大部分为易降解的COD,第2段微生物降解的COD中含有部分不易降解的COD,第3段微生物基本上降解的是难降解COD。
污泥回流方式调整措施:保持第1段沉淀池污泥回流方式不变,第2段沉淀池回流污泥调整为一部分回流至第2段生化池,另一部分回流至第1段生化池,第3段沉淀池回流污泥调整为一部分回流至第3段生化池,另一部分回流至第2段生化池。
通过错位回流方式,向第1段和第2段生化池内分别引进能够降解难降解COD的菌群,强化第1段和第2段生化池对难降解COD的降解能力。第2阶段调整后,各生化段的出水COD的变化如图4所示。
由图4可以看出,第1段生化处理出水COD在1 622~2 485 mg/L之间,平均值为2 156 mg/L,较第1次调整后下降7.7%;第2段生化处理出水COD在604~1 100 mg/L之间,平均值为826 mg/L,较第1次调整后下降25.8%;第3段生化处理出水COD在135~184 mg/L之间,平均值为160 mg/L,较第1次调整后下降16.7%。
可以看出,通过强化第1、2段降解难降解COD的菌群的培养,其COD去除效果明显增强,特别是第2段生化系统的强化效果更为明显。
2.3 调整污泥龄
由于污水站来水中氮、磷含量不高,对于脱氮除磷没有特别要求,一般需要往生化系统中投加氮、磷,故原系统设计运行的各生化段的污泥龄一直保持在10 d左右。有研究表明,延长泥龄,会使活性污泥颗粒的 Zeta 电位绝对值降低,污泥表面疏水性增强,导致 DLVO总位能下降,从而有利于污泥的絮凝,表现在出水浊度的降低。
针对造纸废水絮凝性能较差,特别是三段生化出水中经常带有细小悬浮物,影响后续深度处理的处理效果,可以考虑适当延长污泥龄,这将有利于降低出水浊度;而且泥龄越长,微生物种群的丰度越大,有利于提高对难降解COD的去除率。
由于第1、2段进水负荷高,调整较长污泥龄可能不利于COD的去除,所以第3阶段主要针对第3段生化池的污泥龄进行调整,将污泥龄逐步由10 d调整至30 d。第3阶段调整后,第3段生化处理的出水COD的变化如图5所示。
由图5可知,第3段生化处理出水COD在80~160 mg/L之间,平均值为118 mg/L,较第2次调整下降26.2%,效果明显。
据类似的针对造纸废水处理的报道,经过生化系统处理后的出水COD基本在211~370 mg/L之间,在此基础上进入后续深度处理。
而对于本研究,强化生化系统处理前,生化系统出水COD在184~376 mg/L之间,而调整后生化系统出水COD明显下降。生化处理出水经Fenton进一步处理,最终出水COD在15~35 mg/L之间,稳定达到排放标准。
3 运行成本优化核算
对生化系统优化调整后,污水处理站运行成本在电费和Fenton处理药剂费方面均有下降。电费下降主要体现在对曝气的控制,现有运行方式下电耗下降0.22元/t;由于Fenton进水COD大幅下降,除调节酸碱药剂用量变化不大,双氧水和硫酸亚铁的用量大幅减小,经核算,改进前Fenton处理成本约为5.61元/t,改进后约为2.56元/t。
4 结 论
针对原处理工艺存在的问题,利用污水站的现有条件,对原运行系统进行了3次优化调整:
(1)将第1、2段好氧生化系统通过曝气控制为微氧环境,使第1、2段生化池具有水解酸化的功能,提高了对难降解物质的去除率;
(2)进行明确的分级处理加上错位回流,使得各段能够针对其进水水质培养各自独立高效的活性污泥系统;
(3)延长污泥龄,富集种群更加丰富的微生物种类,提高对难降解COD的去除率,并增强活性污泥絮凝效果,降低出水浊度。
通过以上措施的叠加,强化了生化系统降解难降解COD的能力。优化调整后的运行结果表明,总体运行效果良好,生化处理出水COD下降了58.3%,运行过程中第3段生化出水COD也极少出现超过300 mg/L的情况,满足了后续Fenton处理进水要求,最终处理出水COD在15~35 mg/L之间,出水稳定达到排放标准。在不新增处理工艺或者扩建的情况下,不仅保障了出水COD 的稳定,且降低了电耗和Fenton处理费用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月10日,湛江中纸纸业有限公司中国纸业南方基地高端包装新材项目一期废水处理工程顺利开工。该项目是由博世科联合体承建的EPC总承包工程,合同额1.17亿元,是我国制浆造纸领域内技术领先的“近零排放”项目。湛江中纸纸业有限公司作为广东冠豪高新技术股份有限公司的全资子公司,系冠豪股份在湛江打造
4月2日,博世科发布公告,近日公司与湖南博世科组成联合体成功中标“湛江中纸纸业有限公司中国纸业南方基地高端包装新材项目一期废水处理EPC总承包工程”项目。中标价为1.17亿元,项目计划工期为270个日历天。该项目的建设将包括7200m/d的废水预处理和厌氧处理系统、10000m/d的好氧处理系统、7200m/d的
近日,温岭东部北片污水处理厂提标和扩建项目完成生活污水进水调试。污水通过进水管线汇入东部北片污水处理厂内,经过一系列工艺处理,出水水质合格符合设计要求,标志着东部北片污水处理厂提标和扩建项目生活污水进水调试阶段成功。温岭市东部北片污水厂扩建规模为3.02万m/d,其中新增生活污水处理设施
PAC(聚合氯化铝)是一种高效絮凝剂、净水剂、除磷剂。由于特性优势突出,适用范围广,用量可比传统净水剂减少30%以上,成本节省40%以上,已成为目前国内外公认的优良净水剂。此外,聚合氯化铝还可用于净化饮用水和自来水给水等特殊水质的处理,如除铁、除镉、除氟、除放射性污染物、除浮油等。1、PAC
2023年,博世科成功签约土耳其某纸业PM6项目废水处理项目,实现了在土耳其市场零的突破,近期,公司派遣骨干团队“走进”土耳其,高效推进项目实施、拓展市场业务,扩大绿色一带一路朋友圈。土耳其某纸业PM6项目采用最先进的纸机工艺技术。依托在制浆废水处理领域的技术及实力,博世科成为该项目生产废
当前污水处理中的生物处理大多是采用与好氧相结合的处理工艺,溶解氧在实际的废水生物处理操作中具有举足轻重的作用,这一指标的不合适或波动过大,会迅速导致活性污泥系统受到冲击,进而影响处理效率。因此在实际生化处理工艺中,需严格控制溶解氧的含量。一、什么是溶解氧(DO)DO是溶解氧(Dissolve
【社区案例】前辈们,我想咨询一下,为什么“D型氧化沟”被称为“D型氧化沟”?“T型氧化沟”被称为“T型氧化沟”?“VR型氧化沟”被称为“VR型氧化沟”?“BMTS型氧化沟”被称为“BMTS型氧化沟”?一、什么是氧化沟?氧化沟(OxidationDitch,OD)又称为连续循环式反应器(ContinuousLoopReactor,CLR),
【社区案例】各位污师,最近气温骤降,污水处理除了提高污泥浓度,还需要提前做哪些调整?保证冬季的正常运行?中国大部分污水处理厂都处于温带地区,都会经历温度比较低的冬季,尤其是北方地区的污水处理,冬季运行具有低温时间长、水温低、进水污染物浓度高、污泥活性较弱等特点,增加了污水处理的难
前几天跟群友交流,聊到了丝状菌的话题,感觉还是有点聊头的。大家对丝状菌的态度与看法也是多种多样,有的对丝状菌产生恐惧,有的对丝状菌恨之入骨,也有用辩证的方法去看待丝状菌的,凡事都有利弊,丝状菌的存在也是这样的。下面我就跟大家聊一下个人对丝状菌的看法吧,也欢迎大家讨论互动,毕竟,丝
制浆造纸工业是国民经济的重要组成部分,也是水污染物排放量较大的行业。根据目前制浆工艺的生产水平,生产1t纸浆,需耗费1.2~2t原木片,产生60~100m的废水。其产生的废水水质、水量与生产工艺、原料、产品种类等密切相关。一般来说,造纸废水中的主要污染物有4类:(1)还原性物质,如木素、无机盐等
近日,深水海纳水务集团股份有限公司(简称“深水海纳集团”)成功中标灵宝哈三联生物药业有限公司(简称“灵宝哈三联”)的兽用药品生产建设项目废水处理EPCO项目,设计、设备、安装、调试费中标金额为768万元。本项目投入运行后,将为灵宝哈三联兽用药品生产建设项目解决制药工业污水的处理难题,为
10月10日,遵义市公共资源交易中心发布了仁怀市石坝河污水处理厂建设工程中标公示,鹏凯环境科技股份有限公司以172590717.88元中标该项目,工期365天。仁怀市石坝河污水处理厂建设项目位于仁怀市茅台镇上坪村,项目采用工程施工-采购-运营总承包(PC+O)建设模式。项目占地面积51.01亩,建筑面积2357平
6月8日,生态环境部对外正式发布国家生态环境标准《电子工业水污染防治可行技术指南》,本标准提出了电子工业水污染防治可行技术。除本标准所列的水污染防治可行技术外,其他可实现电子工业水污染物稳定达标排放的水污染防治技术,也可作为企业技术选择的参考。标准自2023年7月1日起实施。关于发布国家
江苏省市场监督管理局印发地标《炼焦化学工业污染物排放标准》报批稿,本文件规定了炼焦化学工业水污染物和大气污染物排放控制要求、监测要求、达标判定以及实施与监督等内容。本文件适用于现有和新建焦炉生产过程备煤、炼焦、煤气净化、炼焦化学产品回收和热能利用等工序水污染物和大气污染物的排放管
2022年9月26日,经江苏省人民政府批准,省生态环境厅与省市场监督管理局联合发布《酿造工业水污染物排放标准》(DB32/4384-2022)(以下简称《标准》)。《标准》对酿造工业水污染物的排放做了哪些规定?让我们一起来了解一下。问:为什么要制订这项标准?答:我省酿造工业发达,为有效管控酿造工业排
制革是我国轻工行业的支柱产业之一,在国民经济建设和出口创汇中发挥着重要作用,也是对畜牧业副产品——生皮进行资源化利用的最有效途径,是发展循环经济的经典范例[1-2]。经过多年的快速发展,我国已成为世界主要的制革产区,但传统制革工艺产生的废水也造成了较严重的环境问题。制革废水具有成分复
6月9日,四川省古蔺郎酒厂(泸州)有限公司和泸州市兴泸污水处理有限公司在郎酒泸州产区举行“酒类废水协商处理协议签约仪式”。市生态环境局、市城管执法局和龙马潭区有关部门负责人受邀参加仪式,市酒业发展局副局长王勇主持并致辞。王勇强调,郎酒泸州产区酿酒废水协商排放正式签约,对于全市酒业来
3月2日,国家标准《农药工业水污染物排放标准(二次征求意见稿)》征求意见。农药行业废水末端处理通常包括预处理和综合处理两大步骤,综合处理大多是采用生化处理,这两步需要进行多工序组合,才能实现达标排放。只有生物类农药主要通过发酵方式生产,可以简单处理后即进入生化。而化学合成农药的工艺
岁末年初,为了及时反映环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2021年行业发展评述和2022年发展展望》,供环保企事业单位、专家和管理者参考。一、2021年发展评述“十四五”时期是我国深入推进生态文明建设的关键期、是促进经济社会全面绿色发展的转型期、是持
北极星水处理网获悉,12月3日,天津市环保产品促进会发布了关于《化学合成类制药工业水污染物排放标准》等六项团体标准征求意见的通知。
随着各地方政府污染物排放标准的发布,污水处理厂均面临着提标改造的问题。即使是市政污水处理厂,有时来水也会混入一定比例的工业废水,使得原水组分比较复杂,难降解有机物含量较高,这对污水处理厂提标改造中CODCr达标造成很大的困难。政府相继发布了《水十条》和《城市黑臭水体整治工作指南》,对
摘要:由于高盐废水的特点,不能简单地进行生化处理,物理化学处理过程复杂,处理成本高,这是废水处理行业公认的高难度。蒸发法是处理高盐废水的最传统的方法,具有较高的运行成本。一般采用多效蒸发器。结构简单,操作方便,淡水水质良好。在此基础上,对高盐废水进行了总结,探讨了高盐废水处理工艺
1、工程概况在现有生化废水系统出水的水质基础上将COD指标降低至80mg/L以下(目前运行状态下COD指标150mg/L以下,生化废水系统出水水量小于250m3/h,从源头上降低污染物排放总量,减轻后续工艺负荷。深度氧化段要求采用臭氧催化氧化工艺或电化学工艺,不允许产生废液、固废及危废。建设规模:处理量250
摘要:比较了活性炭吸附工艺、混凝工艺、Fenton氧化工艺以及O3+H2O2氧化在以烷烃类和苯系类为主的农药复合污染场地地下水COD去除率的差异,选择了去除效率较高的Fenton氧化+活性炭联合修复工艺。结果表明,在1L污染地下水中,将pH调节至4~4.5,投加25mL30%H2O2+3.53gFeSO4的Fenton试剂,反应3h,过滤
ldquo;第八届高难度工业污水处理技术研讨会rdquo;在北京中航泊悦酒店圆满落幕!本次研讨会由ldquo;技术前沿+工艺包与案例+典型行业工艺路线选择+水处理总工沙龙rdquo;四单元构成,围绕工业领域热门与难点行业,如煤化工、石油炼化、农药等,展开深入交流,在工业水处理行业学术交流、技术与设备展示方面
从事环保行业的都知道,工业废水不好处理,尤其是ldquo;三高rdquo;废水。ldquo;三高rdquo;废水,即高浓度有机物、高氨氮含量、高含盐量的工业废水。这类废水虽然用常规的絮凝、萃取、活性污泥等技术也能处理,但有时处理效果不错,但有时处理效果也不尽如意。因此,对高效处理工业污水技术的研究一直在
随着工业的发展,在工业生产过程中产生大量的工业废水,其中来自造纸、医药、石化、油气开采等行业这类工业废水具有成分复杂、高COD、高含盐量、有毒含量高和难降解的特点。此类难降解工业废水若不经过处理而直接排放,会污染地表水、地下水、土壤和耕地,影响植物及微生物的正常生长,从而影响人类的
工业废水处理行业市场规模由工业废水工程投资和工业废水治理运营服务两部分构成,2016年中国工业废水处理行业市场规模为842.84亿元,同比增长增长4.86%。《全球及中国工业废水处理行业发展报告》指出,ldquo;预计2017-2020年中国工业废水处理行业市场容量将达到3800亿元。rdquo;以2015年1月1日新《环保
金属矿冶炼、电解、电镀等行业每年要排放大量含重金属离子的废水,重金属废水排放到环境中不能被微生物降解,并通过土壤、水、空气,尤其是食物链,对人类健康、动植物及水生生物产生严重危害。近年来随着表面处理技术的发展,电镀、化学镀被广泛应用,而这种工艺中大量使用的络合剂,使重金属废水的成
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!