登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
EDI净水设备模块是指用离子交换膜和离子交换树脂在直流电场的作用下从水中去离子的过程。
现今市场上大多数的EDI模块产品由交替放置的阳离子膜和阴离子膜构成,水从其中的膜隙流过。这些交替放置的阴、阳离子交换膜被固定在两个带有进出水口的装置之间,水从其中的膜间隙流过。面向正极的阴离子膜与面向负极的阳离子膜之间构成浓水室,面向负极的阴离子膜与面向正极的阳离子膜之间组成淡水室。为了便于在弱电解质溶液中强化离子交换过程,在淡水室,有时在浓水室添加离子交换树脂。在 EDI模块装置机架两端的电极提供了横向的直流电场,直流电场驱动水中的离子运动穿过离子交换膜。从而实现淡水室中的离子浓度降低和浓水室的离子浓度的增加。
1、初次启动
在启动EDI系统之前,RO系统, EDI模块的安装,仪表的校正工作,其他系统的检查都应当已经完成。接下来是推荐的EDI系统启动程序;
2、EDI启动程序
在将管路连接至EDI之前,请先确认所有前级预处理设备和管路已符合清洁要求。确保所有连接至EDI模块的管路连接正确, 管路已符合清洁要求。
检查所有相关的手动阀门处于正确的位置和开启/关闭状态。进水阀、产水阀、超纯水箱进水阀和浓水流量控制阀处于完全开启状态。在冲洗过程中,检查所有管路连接和阀门,确保无泄漏。如果必要的话,锁紧连接部分。
确认EDI模块至电源供电模块的接线正确。
启动RO产水输送泵。调节阀门开度至设计流量和设计压力。检查设计回收率和实际回收率。一直注意检查系统压力,同时确保系统运行压力不超过模块的高运行压力极限。
在设计流量下,调节阀门直至产水压力比浓水排放压力高。重复以上步骤,直至系统运行符合设计产水量和浓水流量。计算系统回收率,与设计值比较。
开启模块电源开关,缓慢调节显示板直流电源至需要数值。注意观察出水水质。记录所有运行数据。
测试所有流量限位开关和相关连锁动作。确保当浓水循环流量不足时,EDI供电模块断电。
继续将CEDI处于循环状态,直至产水指标达到要求。一旦EDI出水指标达标,将EDI产水阀(至后级水箱)打开,将EDI产水回流阀(至RO水箱)关闭。再次确认产水压力比浓水排放压力高。将系统运行值与设计值比较;在系统运行稳定后(水质和流量),在日常运行数据记录表中记录运行数据。将运行模式选定在自动模式。
在系统运行的第1周,定期检查系统的运行情况以确保系统正常可靠的运行。
3、运行启动
一旦EDI系统已经启动,(实际上,EDI系统不可避免的会或多或少的停机和重启动。)每次的停机和重启动都意味着压力和流量的变化,以及对EDI模块的机械性冲击。因此,系统的停机和重启动的次数应当尽可能的少,以保证EDI系统的平稳运行。
在系统启动之前和过程中的检查应当作为一种日常工作进行,并且做好工作记录。仪表的校正,报警,安全设备和管路泄漏性检查也应当作为一种日常工作进行。
4、停机
将电流和电压调至为0,关闭EDI模块的供电电源。
停运反渗透产水输送泵。
关闭每个EDI模块的进水阀。
关闭EDI模块的隔离阀
5、系统停机后的再次开机
将EDI系统阀门运行状态处于EDI循环状态;
启动反渗透产水输送泵;
按照EDI启动程序逐项检查,启动EDI系统。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
EDI模块的清洗保养方案1、RO系统的清洗(1)准备关闭对应系统的产水手动阀,打开对应系统的产水排放阀,浓水底部放水阀,放尽系统内存水后,关闭这几个阀门门。打开对应系统的清洗进水阀,产水回水阀、浓水回水阀。(2)配制清洗液酸洗和碱洗时分别配制以下清洗液:0.5%盐酸酸洗液:在1600LRO水中缓慢
2020年8月31日-9月2日,2020AQUATECHCHINA上海国际水处理展览会在上海国家会展中心成功举办。作为全球范围内超大规模的水处理展示平台,本届展会展示面积高达22万平米,观众覆盖面积极广,包含:石油、化工、制药、钢铁、冶金等多个领域。今年受到疫情的影响,部分国外的展商与观众无法前来进行参展,但是
华能南京金陵发电有限公司化学水处理电渗析设备EDI模块采购项目已具备招标条件,现对本项目进行招标,邀请有兴趣的投标人(以下简称申请人)提出报名申请。1.项目概况及招标范围:1.1项目概况华能南京金陵发电有限公司,位于江苏南京市栖霞区栖霞经济技术开发区江乘大道8号,现拥有2X1030MW超超临界燃
近日,美国虚拟电厂供应商SwellEnergy的首席执行官表示,纽约公用事业公司ConEdison早就认识到聚合家庭电池系统与太阳能配套可以提供的价值。
EDI模块的清洗保养方案1、RO系统的清洗(1)准备关闭对应系统的产水手动阀,打开对应系统的产水排放阀,浓水底部放水阀,放尽系统内存水后,关闭这几个阀门门。打开对应系统的清洗进水阀,产水回水阀、浓水回水阀。(2)配制清洗液酸洗和碱洗时分别配制以下清洗液:0.5%盐酸酸洗液:在1600LRO水中缓慢
反渗透EDI纯水设备运行过程中电阻率下降,电阻率是表征水体导电能力的另一指标,单位为MΩ·cm,指截面积为1cm2的两个平板电极在相距1cm时水中的电阻值。电阻率与电导率呈倒数关系。为了提高水的导电性能表征精度,电导率高于1μS/cm时可用电导率表征,电导率小于1μS/cm时用电阻率表征。电阻率下降的
智慧指挥建设时代,区域协作成为关键词。所谓协作,就是对内与对外、纵向与横向四个维度的协同互通,摸清指挥中心建设环节的脉络,打破原有的区域壁垒,实现跨区域信息共享、资源共用的阶段目标。在政府搭台的信息化升级的大舞台,公安、交通、能源、医疗等职能部门担任着重要角色,井然有序的城市服务
用电荒、用电高峰期、错峰用电等词汇出现的频率越来越频繁,足以让全社会重新认识到我国电力资源的严峻形势,为了更合理地分配各地区电力资源,电力调度中心发挥着重要作用,坐席人员7*24小时轮班观察与监控电力数据,做到第一时间发现数据异常,但是,坐席人员因长时间且快速反应的坐席信号操作、切换
不难发现,控制室传统坐席的系统应用与坐席环境存在不少隐患,不单是指电力控制室。操作人员与大量业务设备同处一个固定的空间环境,鼠标键盘、显示端和主机是一一对应的,操作人员只有找到对应的鼠标键盘才能完成正确业务操作,无法处理并发数据,根本谈不上业务协作,导致业务处理效率很低。设备维护
大数据时代,我们茶余饭后的话题都跟数据相关,或者说任何一个动作都能构成一项数据,电力行业也不外如此,以大数据推动电力产业优化发展。电力大数据主要来源于电力生产和电能使用的发电、输电、变电、配电、用电和调度各个环节,可大致分为三类:1.电网运行和设备检测或监测数据;2.电力企业营销数据
2015年2月2日,美国跟踪系统制造商NEXTracker宣布已向美国公共事业规模太阳能开发商SunEdison供应共计223兆瓦的单轴光伏跟踪器,用于拉丁美洲部分正在开发中的大型公共事业级太阳能项目。NEXTracker表示,跟踪器已用于SunEdison智利142兆瓦的光伏项目及洪都拉斯81兆瓦的光伏电站。“我们智利与洪都拉斯光伏电站已安装NEXTracker光伏跟踪器,效果显著。”SunEdison全球运营部副总裁SasanAminpour表示,“SunEdison工程团队已开展广泛评估,得出结论:对于我们地面
美国公共事业规模太阳能开发商SunEdison近日宣称未来三年将向美国跟踪系统制造商NEXTracker采购共计1.85吉瓦的跟踪系统。据SunEdison透露,目前旗下数个光伏电站采用NEXTracker跟踪器,其中包含位于智利装机量73兆瓦的太阳能项目。“NEXTracker已开发出一种真正创新型的跟踪器。”SunEdison首席执行官艾哈迈德•夏蒂拉(AhmadChatila)说道,“NEXTracker产品有助于我们系统生产出更多的电力,并降低总成本。”该企业指出,采用NEXTracke
SunEdison正在与班加罗尔的GlobalAcademyofTechnology合作,在该大学的班加罗尔校园创设一个研发设施。该主要的光伏能源供应商将与GAT合作改进用于太阳能水泵、储能解决方案、混合能源系统和光伏发电站监控及安装结构的技术。卡纳塔克邦电力部长兼国家教育基金主席D.K.ShivaKumar表示:“在GAT拥有SunEdison研发设施为我们的学生提供将其学术经验延伸到行业的机会。他们将与来自世界领先的太阳能公司之一的科学家和工程师开展研究,给予了他们独特的经验,将为他们成功的职业生涯做好准备。”SunEdis
近日,汉丞科技圆满完成超亿元人民币B轮融资,成功引入国际能源及资源公司福德士河(Fortescue)及高瓴创投(GLVentures)的注资。本轮融资由福德士河(Fortescue)与高瓴创投(GLVentures)共同领投。总部位于澳大利亚的福德士河为国际能源及资源公司,对绿氢及相关产业链有广泛布局。本轮融资前,汉丞
近日,从南开大学获悉,南开大学电子信息与光学工程学院罗景山教授团队联合西班牙巴斯克大学科研团队,在电催化水分解制氢研究中取得重要进展。据了解,该联合团队利用金属载体相互作用构筑了碱性条件高活性析氢催化剂,能够在每平方厘米5安培的大电流密度下稳定运行超过1000小时,满足了阴离子交换膜
北极星氢能网获悉,近日,湖北省人民政府发布《湖北省加快未来产业发展实施方案(2024—2026年)》,其中指出:重点开发阴离子交换膜电解水制氢、固体氧化物电解制氢关键技术,突破石墨烯、高活性轻金属等固态储氢材料。原文如下:省人民政府办公厅关于印发《湖北省加快未来产业发展实施方案(2024—20
日前,天津大学尹燕团队成功研发高性能阴离子膜燃料电池。该电池性能优异、耐久性强,有望为我国氢能源汽车赛道“提速”。相关成果已发表于国际权威期刊《焦耳》。氢燃料电池是“氢经济”的重要组成部分,被认为是实现“碳中和”主要途径之一。高温阴离子交换膜燃料电池是氢燃料电池中的“佼佼者”,具
韩国仁川国立大学与哈佛大学联合研究团队成功开发出一种耐疲劳的电解质膜。研究团队创造了一种由Nafion和全氟聚醚(PFPE)组成的互穿网络电解质膜。Nafion是一种常用的具有质子导电性的塑料电解质,PFPE则形成了一种耐用的橡胶聚合物网络,这种橡胶的加入虽然略微降低了电化学性能,但显著提高了耐疲劳
近日,稳石氢能宣布将在2023年底完成搭建自主研发的阴离子交换膜产线并实现小规模生产。达产后一期产能10万平米(4GW)。据悉,阴离子交换膜不仅可用于AEM电解水制氢装备,还可以应用于阴离子燃料电池等领域。另悉,稳石氢能AEM电解槽产线也将于2023年四季度正式投建。预计到2025年,该产线可实现年产
12月29日,沈抚示范区氢燃料电池关键材料研发生产基地项目正式投产运营。
电渗析(ED),作为膜分离中发展较早的分离技术,是在电场作用下,以电势差为驱动力,利用离子交换膜对料液进行分离和提纯的一种高效、环保的分离过程。
12月23日,财政部官网发布了《国务院关税税则委员会关于2021年关税调整方案的通知》。通知指出,根据《中华人民共和国进出口关税条例》的相关规定,自2021年1月1日起,对部分商品的进口关税进行调整。12月23日,财政部官网发布了《国务院关税税则委员会关于2021年关税调整方案的通知》,其中指出自2021
EDI水处理设备的工作原理:EDI是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离生产H+和OH-,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!