登录注册
请使用微信扫一扫
关注公众号完成登录
由表 1可知,与热脱盐相比,膜脱盐的能耗更低,自2000年后,约70%的脱盐工厂采用膜工艺。
大多热脱盐工艺具有压力较高、抗污染抗氧化性较差、回收率低、能耗大等问题,开发安全、便捷、低成本、高容量、可回收的脱盐技术一直是技术创新的核心所在。传统电渗析过程中不发生相变和化学反应,无需引入化学药剂,能耗低,对环境污染小。
通过考察近十年来与电渗析相关的SCI论文发表数量发现(数据来自Web of Science关键词“Ele-ctrodialysis”),论文发表数量逐年增加,由2010年的191篇增加到2019年的505篇。
脱盐技术除了被应用于生产淡水外,有效去除污水中重金属等有害离子实现污水净化也是脱盐技术的技术目标。
本研究介绍了传统电渗析技术的基本原理及技术限制,以及几种典型新型电渗析工艺的基本技术原理、装置运行模式和应用范围,以期推动电渗析技术的发展和研究。
01 传统电渗析技术
电渗析(electrodialysis,ED)装置由直流电场和多对离子交换膜组成,在阴极和阳极之间交错放置了数对阴离子交换膜(AEM)和阳离子交换膜(CEM),其内部利用隔离垫片来分离,在靠近电极处电解质溶液循环通过电极室形成电极冲洗室。
电渗析技术基本原理为:利用离子交换膜的选择透过性,在外加直流电场的作用下使阴阳离子定向迁移选择性过膜,在由离子交换膜形成的隔室内交替形成浓水室和淡水室实现脱盐目的,具体原理见图 1。
电渗析装置通常由离子交换膜、电源、辅助材料(垫片、电极、密封垫片)组成。装置中电极通常由钛、氧化铝、石墨等碳材料制成。
装置中离子交换膜由活性离子交换基团、固定官能团和疏水底物组成,具有选择透过性,根据膜结构中的固定电荷属性分为阳离子交换膜和阴离子交换膜。
电渗析传质过程复杂涉及参数多,难以从实验角度对其进行全面深入的研究,因此近年来相关科研人员尝试通过模拟电渗析中的物质分离过程及物质传递过程优化电渗析工艺,电渗析的传质过程包括浓差极化现象、离子交换膜间对流传递、离子定向或过膜的电迁移传递和扩散传递、电解质-膜平衡等过程。
用于描述电渗析传质过程的最常见模型为Nernst-Planck模型和Maxwell-Stefan模型,分别适用于单和多电解质体系。
02 新型电渗析技术发展
近年来,人们相继开发了可同时产酸碱的双极膜电渗析技术、利用膜特性进行离子选择性分离的选择性电渗析、具有重组和浓缩离子能力的复分解电渗析、将化学差势能转化为电势差发电的逆电渗析等新型电渗析技术。
2.1 双极膜电渗析
除普通电渗析外,双极膜电渗析是在实际生产中最常用的电驱动膜分离工艺。双极膜电渗析在传统电渗析的基础上引入了双极膜。
双极膜(BM)由3个主要部分组成:阴离子交换层、阳离子交换层和阴离子与阳离子交换层接合处的亲水界面。装置通电后,在直流电作用下双极膜亲水界面中水分子解离为氢离子和氢氧根,阳离子通过阳离子交换膜(CM)向阴极迁移,阴离子通过阴离子交换膜(AM)向阳极迁移。
典型的三隔室双极膜电渗析结构见图 2。
由图 2可知,双极膜与阴阳离子交换膜交替排列,双极膜与阴离子交换膜之间形成酸室,双极膜与阳离子交换膜之间形成碱室,阳离子交换膜与阴离子交换膜之间的隔间为脱盐室。三隔室双极膜电渗析最大的优势在于同时完成产酸产碱和脱盐过程。
然而,用三隔室处理含弱酸根废水时存在一些问题。以图 2为例,酸室中产生的硼酸为弱电解质,导电率低、膜堆电阻大、能耗大、经济性差。
因此有学者通过在酸室填充强酸型阳离子交换树脂提高膜堆导电能力生产酒石酸,当电流密度为70 mA/cm2,添加树脂后酒石酸生产能耗由传统三隔室膜堆23 kW·h/kg降至16 kW·h/kg,此外扩散损耗以及双极性膜的非理想渗透选择性也将显著增加能耗。
在实验室规模内,双极膜电渗析已被应用于多个领域,其中以同时产酸产碱、清洁生产碱性物质、于复杂体系中原位回收有机酸、控制系统pH制备pH敏感型物质、分离提取多种蛋白、分离回收氨等领域为主。
除上述传统技术外,双极膜电渗析还可用于温室气体回收,现阶段我国提倡可持续发展,实现废弃物零排放是目前技术要求的主要目标之一,以二氧化碳为例,双极膜电渗析技术通过电势差驱动跨膜离子传输,可从气流中回收二氧化碳。只要有成本更低的可再生能源和更便宜先进的膜材料,此类空气捕集法将非常具有应用前景。
在实际生产中,双极膜电渗析起步较晚,在整个膜市场中所占比重较小,但因其应用领域专一而且具有难以替代性,在资源零排放和回收领域优势极大。
目前,在实际应用中,双极膜电渗析的应用范围分为以烟气脱硫、硝酸盐回收等为主的污染控制资源回收和以生产有机酸碱、蛋白生产果汁果酸为主的化工和食品生产,各领域应用特点见表 2。
由表 2可知,工业上双极膜电渗析应用的主要限制是昂贵的膜维护和更换以及电能成本。
2.2 选择性电渗析
传统电渗析对阴阳离子分离效率高达97%,但对相同电荷不同价态的离子分离效率不高。将具有单价和多价离子分离性能的离子交换膜引入电渗析装置将大大提高不同价态同种电荷离子的分离效率,此类电渗析装置被称为选择性电渗析(Selectrodia-lysis,SED)。
M. Reig等利用选择性电渗析技术分离废水中氯化钠和硫酸钠,再利用双极膜分离回收酸和碱,其中选择性电渗析装置原理见图 3。
由图 3可知,阴离子交换膜和阳离子交换膜之间放置单价离子选择性交换膜。装置通电后,SO42-向阳极迁移,途中被阴离子选择性交换膜阻挡,富集于阴离子选择性膜和阴离子交换膜间的隔室中,Cl-则富集于阳离子交换膜和阴离子选择性膜间的隔室中,阴阳离子交换膜间的隔室中离子浓度降低成为淡水室,不同价态阴离子成功分离。除分离离子外,选择性电渗析工艺还可用于元素的回收富集。
选择性电渗析技术的核心竞争力在于选择性离子交换膜的性质。在前人的研究中,研究者们已将如聚苯胺、聚季铵盐等基团引入离子交换膜增强其对单价阳离子的选择性,但由于其具有高表面电阻,这类膜阳离子通量通常较低。
有研究表明可以利用离子密度大疏水相的导电基团提高阳离子通量,研究者通过在膜骨架中引入由芳族骨架和离子侧链组成的离子通道增强阳离子通量,将两性结构的聚(2,6-二甲基苯乙烯氧化物)季铵盐引入膜结构中,聚合物主链上的各种烷基链和以氮为中心的官能团诱导了膜的疏水性,同时提高膜的选择性和单价阳离子通量并减少了膜溶胀。
另一类由季铵化氧化石墨烯修饰的聚乙烯醇(PVA)-QPEI(季铵化聚乙烯亚胺)阴离子交换膜可通过PVA-OH基团选择地加速氢氧根的传输,此外膜中的季铵化氧化石墨烯纳米片可抑制具有较大水合离子半径离子的传输,使膜具有高选择性。
在现有研究中,选择性电渗析技术常被用于单价/多价离子分离,最常见的为分离各类金属离子如锂、镁、砷或氯离子等阴离子,也有研究将选择性交换膜与普通离子交换膜联合使用用于分离不同产物。
虽然选择性膜在广泛操作条件下均显示出稳定的离子选择性,还可利用脉冲电场控制膜界面浓度极化现象,但这些特殊的离子交换膜成本较高,脱盐效率也将随流量的增加而降低,同时由于静电排斥,二价阳离子的传输速率也将逐渐降低,这些特点都限制了选择性电渗析的实际应用。
2.3 复分解电渗析
复分解电渗析(Electrodialysis Metathesis,EDM)具有重组和浓缩离子的独特性能,通过离子重组可发生类似复分解反应。
基于四隔室结构特点,其可以将少量的溶解度低(或不溶解度)的盐类转化为高溶解度的盐。复分解电渗析通过将2种原料AX、BY和另2种产品液BX、AY分别投入4个隔室,在电场力的作用下离子定向迁移过膜而后被同性离子交换膜阻挡后停留于不同隔室,完成AX+BY→AY+BX复分解反应,复分解电渗析原理见图 4。
由图 4可知,在复分解电渗析系统中,交替的离子交换膜(阳-阴-阳-阴-阳)形成4个隔室(浓缩室、淡水室、浓缩室、淡水室),利用离子的定向移动和离子交换膜的选择透过性以氯化钾和硝酸盐为原料制备无氯钾肥(KNO3)并回收氯化钠。
相比于双极膜电渗析和选择性电渗析,针对复分解电渗析的研究较少,且大多数研究为浓缩高纯度无氯钾肥。
常规无氯钾肥复分解生产法具转化率低、能耗高、产品纯度低等缺点,与传统的复分解反应相比,复分解电渗析无需萃取、无需复盐沉淀、电流效率高、产物纯度高。
但与其他电渗析工艺一样,复分解电渗析的效率是由操作参数(电流密度、进料浓度和成分等)和离子交换膜的性能决定的。复分解电渗析技术同样对膜有一定要求,高选择性、高导电性等性质是在低能耗下提供浓缩产物的重要膜性能。该新型技术虽具有一定优势,但因其装置复杂、对进水要求高未能投入生产。
2.4 逆电渗析
逆电渗析(Reverse Electrodialysis,RED)的原理为:通过在不同浓度盐溶液间放置离子交换膜,利用离子浓度差导致的离子迁移将化学能转化为电能,其具体原理见图 5。
由图 5可知,阴阳离子交换膜交替间隔形成浓水室(HS)和淡水室(LS),在浓度差作用下,浓水室中阴阳离子分别透过阴阳离子交换膜进入淡水室,离子的定向迁移形成内电流,再通过阴阳极的电化学反应将离子迁移内电流转化为电子迁移外电路电流,将化学势转化为电能。
根据逆电渗析原理可推断出,逆电渗析装置可从2个不同盐度梯度的溶液中提取能量,且不产生二次污染。
目前全球的盐差势能资源巨大,利用电渗析装置将化学势差转为电势差进而产生电能的技术是一种新型的可持续发展技术,前景良好。
有研究表明可以将RED与传统ED结合开发无电源电渗析(PFED)实现零能耗脱盐,具有很高的经济效益和可持续发展性。但在实际条件下,由于欧姆内阻和压降引起的泵浦损耗,装置中只有一部分能量可以转化为电能,除能量损耗外,装置中还存在垫片堵塞和无机物沉淀造成的结垢。
综上所述,以上4种新型电渗析工艺原理及优缺点见表 3。
03 电渗析工艺能耗比较
电渗析工艺的成本包含固定成本和运营成本。固定成本主要取决于离子交换膜面积,膜面积由进水和出水浓度决定;运营成本包括劳动成本、维护成本和能源成本,劳动成本和维护成本与工厂的规模成正比,能源成本由两部分组成,分别是使离子过膜的电能和将溶液泵入电渗析装置所需的能量,工艺参数不同时二者所占比重不同,总体上与进水出水浓度差以及膜间阻力成正比。
自1970年以来,电渗析装置脱盐的能耗由20 kW·h/kg左右降低到了0.4~8.7 kW·h/kg,成本也已降低至不足0.75美元。
现工业规模电渗析装置可处理含盐质量浓度为2 500~3 000 mg/L的废水,处理成本和能耗与待处理液浓度成正比;在浓缩富集方面,以常见浓缩元素氨氮和磷为例,利用电渗析装置回收废水中的氨氮可浓缩至(7 100±300)mg/L,平均功耗为(4.9±1.5)kW·h/kg,利用具有聚砜基阴离子交换膜的电渗析法纯化磷酸能耗为2.73 kW·h/kg;在选择性分离方面,利用电渗析进行单价和二价阳离子选择性分离,能耗为0.502 kW·h/kg;在双极膜系统研究方面,利用双极膜电渗析法生产α-酮戊二酸能耗为3.72 kW·h/kg;在中等规模电渗析实际应用领域,J. Y. Nam等考察了1 000膜对逆电渗析装置利用城市废水和海水发电情况,当装置以1.5 cm/s速度运行时产电功率为0.76 W,实验室规模逆电渗析功率为6.7~12 W/m2。
脱盐工业每年消耗8.5亿t石油处理9千余万t含盐废水并产生6 700万t二氧化碳,因此寻找可再生清洁能源具有重大的意义。
在过去的10 a中,光伏能源转换已成为一种新兴技术,其需求量迅速增长,是一种极具潜力的能源替代技术。太阳能作为绿色可再生能源已被用于电渗析系统供能,但要有效地将太阳能转化为可用于电渗析的电能需要消耗大量资金,M. Herrero-Gonzalez等利用双极膜电渗析结合太阳能从海水中分离生产HCl和NaOH,能耗为4.4 kW·h/kgHCl,除能耗成本外还有较高的设备维护和太阳能利用成本。
在传统电渗析脱盐方面,对于含盐质量浓度为2 500~5 000 mg/L的微咸水系统,光伏电渗析(PV-ED)能耗为0.49~0.91 kW·h/m3低于传统电渗析,但传统电渗析成本为0.45~0.78欧元/m3低于PV-ED成本6.34~11.93欧元/m3,可见使用可再生能源的电渗析装置虽能耗较低却具有较高的总成本。
经预测到2025年,PV-ED系统成本将与传统电渗析成本持平,在此之后,由于化石燃料短缺,传统电渗析的成本将继续增加而PV-ED的成本将继续降低,这一发展趋势有利于光电池相关技术的发展。除成本外,阻碍PV-ED系统的大规模商业化的技术限制主要在于如何平衡太阳能系统能量输出和电渗析系统能量需求。
04 结语
我国对电渗析的研究起步于20世纪60年代,20世纪后半期因其分离效率不及纳滤等技术只用作预处理,但随着技术的发展,双极膜的引入使电渗析技术重新进入应用市场并得到了发展和突破。
电渗析技术是一种经济高效的脱盐工艺,可显著降低废水中离子浓度。与反渗透相比,电渗析的主要优势在于几乎不需要进料预处理,同时由于没有渗透压限制,电渗析中的浓缩盐水浓度也比反渗透高得多;与蒸馏过程相比,电渗析具有能耗低的优点;与常规的离子交换方法相比,电渗析具有不需引入化学药剂、不产生洗涤废水等优点。
传统电渗析虽具有效率高、能耗低等优点,却也存在一些技术限制,例如处理高盐废水带来的高能耗、不能选择性去除离子、产品单一等问题。
因此针对电渗析相关技术的研究得以蓬勃发展,具有特殊膜组成和装置结构的新型电渗析技术拓宽了传统电渗析的应用领域。电渗析已被广泛应用于水处理领域。
在实验室规模内,在海水淡化领域电渗析技术已具有高淡水回收率,电渗析也可被用于反渗透回水制备粗盐、零液体排放、高盐度油砂水脱盐、果汁脱酸等众多领域。在实际应用中,随着国内制膜技术的进步和应用技术不断开发,各类引入特殊作用膜的电渗析技术应用正在逐步扩大,电渗析将广泛应用于能源、食品、生物、化工、和饮用水等领域。
前人针对新型电渗析相关技术的研究虽解决了部分传统电渗析技术限制却也带来了一系列新问题,例如特殊离子交换膜成本问题、装置复杂不便于实际使用以及能量转化效率不高等问题,同时电渗析不可连续脱盐、膜污染等传统问题尚未得到解决。
此外,从不同公司的离子交换膜和电渗析设备来看,在电渗析行业内有很多东西没有形成行业统一化发展,在一定程度上阻碍了电渗析技术的发展。随着2015年国务院《水污染防治行动计划》“水十条”的颁布,我国提倡可持续发展,实现废弃物零排放是目前技术要求的主要目标之一,电渗析技术需要顺应国家要求将可持续发展作为技术目标继续发展。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年11月4-6日南京国际博览中心立足长三角辐射全国搭建供需桥梁深化交流合作制药产业链的“一站式”商贸采购平台长三角地区制药机械品牌化、专业化行业盛会市场概况制药行业作为国民经济的重要组成部分,近年来在全球经济环境复杂多变及国内政策持续优化的背景下,呈现出既有机遇又有挑战的发展态势
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
各有关单位:随着社会对水环境质量要求的不断提高,以及更为严格的各地方标准的陆续出台,老旧污水处理厂的提价、提标改造和建制镇的污水处理设施新建将成为新的增长点;工业废水处理也是我国环保产业的重要分支,也是实现碳中和的重要路径之一,未来随着各地工业园区建设的推进,以及政策的引导,工业
8月28日,大唐郓城630超超临界二次再热国家电力示范项目废水零排放处理EPC总承包工程中标结果公示。中标人:江苏海容水务股份有限公司,中标金额:77986000.00元。招标文件显示,该项目对大唐郓城发电有限公司2x1000MW发电机组项目废水进行零排放处理工程施工建设,包括工程设计(工艺系统及其配套系统
2.1招标编号:CWEME-202406SDYC-S0012.2项目名称:大唐郓城630°C超超临界二次再热国家电力示范项目。2.3建设地点:山东省菏泽市郓城县。2.4建设规模:2×1000MW。2.5计划工期:2024年6月26日-2025年9月25日,日历工期457天(具体开始时间以招标方通知为准)。2.6招标范围:对大唐郓城发电有限公司2×1
据茫崖发布消息,近日,青海茫崖市一里坪地区的五矿盐湖有限公司年产1000吨电池级氢氧化锂中试项目传来捷报:该项目已成功实现带料试车,现正进行消缺等收尾工作,项目预计在今年4月底完工。五矿盐湖年产1000吨氢氧化锂中试项目,占地面积2820平方米,总投资5000万元,拟建设一条年产量1000吨的电池级
2024年2月1日,国家能源集团科技环保有限公司所属“国能朗新明环保科技有限公司”正式更名为:国能水务环保有限公司(简称:国能水务)。国能水务深耕环保领域二十余年,是国家能源集团唯一专业从事水处理工程、水务投资与运营、声学环境治理、节能环保产品制造、生态修复治理的综合型智慧环保企业。五
10月26日由ACI环保(上海功佳信息咨询有限公司)主办,中国物资再生协会废旧电池回收利用分会,环卫科技网联合支持,德国BHS-Sonthofen公司独家协办的BRS2023中国国际动力电池回收峰会在上海隆重召开。来自国内外整车企业、电池生产企业、电池回收与利用企业及产业链相关技术设备供应商、投资券商、咨
研究背景近年来,随着城市化进程加快以及经济的快速发展,城市生活污水排放总量迅速提高。为了改善水环境质量,保护自然水资源,我国对于城市污水处理提出了更高的要求。在城市污水处理厂中,污水中有机物、氮、磷等污染物通常采用生物处理与化学处理法去除,其中化学处理是指向污水中投加混凝剂、絮凝
为了实现碳中和目标,我们除了要减少碳排放之外,还需要通过碳汇,碳捕集和封存等负碳技术来减少空气中的碳含量。直接空气捕集(directaircapture,DAC)是我们此前介绍比较多的负碳技术。传统的直接空气捕集技术分为固体DAC和液体DAC两类,通过化学处理直接从环境空气中捕捉二氧化碳,这种技术面临着二氧
编者按:海水淡化在我国经历了数十年认识、质疑、认可的漫长过程。如今因水资源日益短缺以及远距离调水高昂成本、输送能耗以及相应的碳排放使得海水淡化优势日逐明显。特别是海水淡化技术在严重缺水的中东等地大规模工程应用带来的技术进步让海水淡化“太昂贵”、“太耗能”之印记已成为历史。目前,最
在“绿水青山就是金山银山”的时代号角声中,国家“双碳”战略与生态文明建设的奋进蓝图正徐徐展开。作为全球综合性能源企业的领航者,国家能源集团以“无废集团”建设试点为笔墨,在这幅壮阔画卷上挥毫泼墨,书写着能源行业绿色转型的崭新篇章。一年来,从黄土高原到东海之滨,从井下采掘到云端数据,
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
各有关单位:2025年是“十四五”规划收官之年,随着国内固危废行业立法与监管进一步趋严,危险废物处置行业逐渐走向规范化、标准化。但工业废盐及高盐废水的大量产生及其综合利用、无害化处置一直是国内的难题。近两年由于我国部分地区土地资源匮乏,与之填埋所产生的系列环境风险依然存在,各级政府也
各有关单位:钢铁工业用水具有需求多样、水质波动大、管网复杂、废水处理成本高、污(废)水和污泥难处理等特点。为贯彻执行节水优先、系统协同治理理念,提高水资源利用率、降低吨钢新水消耗,优化水网络,发展智慧水务,实现废水“零排放”,促进钢铁工业用水绿色低碳发展,中国金属学会将于2025年7月2
近日,中国化学东华科技中标中海壳牌惠州三期乙烯项目污水处理场设计、采购、施工(EPC)总承包项目,中标金额为5.58亿元,是目前公司在石油化工废水处理领域承接的最大规模的总承包项目。项目位于国家重点发展的七大石化产业基地之一的广东省惠州市大亚湾经济技术开发区石化工业区,建设内容包括污水
近日,2024年度中国机械工业联合会“机械工业科学技术奖”揭晓,电站集团摘得两个二等奖、两个三等奖。其中,“高湿环境下汽轮机叶片水蚀安全性评判及防护关键技术与应用”“燃煤电厂脱硫废水高效处理关键技术及工程应用”两项目获科技进步奖二等奖,“重型燃气轮机数字化智能化运维关键技术及应用”“
各有关单位:随着社会对水环境质量要求的不断提高,以及更为严格的各地方标准的陆续出台,老旧污水处理厂的提价、提标改造和建制镇的污水处理设施新建将成为新的增长点;工业废水处理也是我国环保产业的重要分支,也是实现碳中和的重要路径之一,未来随着各地工业园区建设的推进,以及政策的引导,工业
近日,中信环境技术中标新疆图木舒克市经济开发区达坂山工业园高盐废水处理厂施工运营一体化(PC+O)项目,中标价:134219012.3000元,运营报价20.69元/m。本项目设计为5000立方米/天的高盐废水处理厂,通过提纯废水中的硫酸钠实现再利用,并用部分硫酸钠制酸碱后回用于生产,实现高浓含盐废水资源化,
8月23日,新疆生产建设兵团三师图木舒克经开区达坂山工业园高盐废水处理厂建设项目施工及运营一体化总承包(PC+O)中标候选人公示第2次公示。中标候选人如下:中标候选人第一名:中信环境技术投资(中国)有限公司(联合体单位:四川中喻环境治理有限公司),投标报价:134219012.3000元,运营报价20.6
据工源气浮消息,8月16日,由锡东新城商务区管委会、锡山区科技局、清华大学科研院主办的“清锡未来行”(第四期)清华老师进锡山活动在中电(无锡)数字芯谷举行。区委副书记、副区长葛敏,清华大学科研院副院长李千,清华大学科研院、清华大学相关合作院系的20多位教授专家及50多家锡山区创新型企业
北极星水处理网获悉,7月11日,中国石化发布中天合创能源有限责任公司中天合创水务部废水、高含盐、矿井水高压反渗透框架招标反渗透膜招标公告。公告如下:(重招)2024-2026中天合创水务部废水、高含盐、矿井水高压反渗透框架招标采购招标公告1.招标条件本招标项目(重招)2024-2026中天合创水务部废
各有关单位:钢铁工业用水具有需求多样、水质波动大、管网复杂、废水处理成本高、污(废)水和污泥难处理等特点。为贯彻执行节水优先、系统协同治理理念,提高水资源利用率、降低吨钢新水消耗,优化水网络,发展智慧水务,实现废水“零排放”,促进钢铁工业用水绿色低碳发展,中国金属学会将于2025年7月2
会议亮点中国政府高端打造,全球各地行业组织共同支持云集全球50多个国家的2600余位水处理行业领袖、专家及资深人士300余位重量级演讲嘉宾共谋应对全球水资源危机下的环保产业商机及技术发展策略10大主题板块,50余个专题分会场,450余个权威专业报告,同期20,000㎡展览,600+展商,15,000+专业买家到
沙特阿拉伯国际电力(ACWAPower)与全球供水公司(WaterGlobalAccess)签订了一项工业发展协议,旨在开发和推广水力射流脱盐(HID)技术。探索替代反渗透的方法在沙特达成协议后,一种新型热法海水淡化技术的开发工作正在被持续推进。沙特海水淡化与绿氢开发商沙特国际电力(ACWAPower)已经与全球供水
导言:根据吉尼斯世界纪录,ACWAPower公司位于沙特阿拉伯的Rabigh3独立水厂(IWP)已成为世界上最大的反渗透(RO)海水淡化厂。最新记录根据吉尼斯世界纪录,ACWAPower公司位于沙特阿拉伯的Rabigh3独立水厂(IWP)已成为世界上最大的反渗透(RO)海水淡化厂。该厂可生产60万m3/d淡化水,经过三周评选程
摘要:介绍了电渗析的原理和性能、回顾了在火电厂水处理中的应用历程、并分析了其在火电厂深度优化用水中的研究和发展方向。对比了几类高盐废水浓缩减量技术,总结了电渗析的优势在于浓缩倍率高、能耗低和操作灵活。通过列举几种新型电渗析技术,指出了其在火电厂废水处理及资源化应用上的巨大前景。认
【化工行业新时代,“绿色”升级大势所趋】综观世界,迫切的环保诉求倒逼化工行业转型升级,几乎是每一个发达国家曾经面对且必须突破的境遇。投入巨资着力研发有毒物和不可降解物的替代产品,研发处理废弃物的裂解、焚烧工艺和装置,研发回收循环工艺和装置,不断升级生产工艺和流程,避免污染气体外泄
DavidSedlak教授在最近举行的IWA数字世界水大会主题演讲中分享了他对水处理新方法未来机会的看法。加州大学伯克利分校DavidSedlak教授认为,自20世纪中叶以来,人们采用了两种截然不同的水资源管理方式。
7月28日,北海炼化与新星石油公司成功举行新能源合作项目签约仪式,实施中国石化部署在广西的首个光伏项目,这也是中国石化绿色低碳转型、炼化企业开展新能源业务的“零突破”。
高盐废水处理是现阶段工业发展面临的重大环保问题。综合利用是解决高盐废水瓶颈的重要路径。高盐废水回用技术的应用是取得显著经济效益、环境效益和社会效益的重要保障。本文基于高盐废水处理现状及研究进展展开论述。
每年全球水奖的入围名单总是可以帮助我们更深刻地理解目前行业的发展趋势,今年也不例外。以下是我对今年的入围名单的一些思索。
随着国家对环保要求的提高和对城市中水回用的推行,越来越多的已建电厂将锅炉补给水的膜处理工艺列入技改项目。城市中水污染性高,在其回用过程中,多家发电企业的化学制水系统和循环水系统频繁出现问题。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!