登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
一、什么是非丝状菌膨胀?
非丝状菌膨胀,顾名思义不是丝状菌过量繁殖导致的膨胀,但是膨胀表现却和丝状菌膨胀的情形差不多,都具有沉淀性能严重下降,二沉池跑泥严重,SV最高可达90%。
非丝状菌膨胀是由于菌胶团细菌本身生理活动异常,导致活性污泥沉降性能恶化的现象,可分为两种。第一种非丝状菌膨胀是由于进水口含有大量的溶解性糖类有机物,使污泥负荷F/M太高,而进水中又缺乏足够的N、P等营养物质或混合液内溶解氧含量太低。高F/M时,细菌会很快把大量的有机物吸入体内,而由于缺乏N、P或DO,就不能在体内进行正常的分解代谢,此时细菌会向体外分泌出过量的多聚糖类物质。
这些多聚糖类物质由于分子中含有很多羟基而具有较强的亲水性,使活性污泥的结合水高达400%以上,远远高于100%左右的正常水平。结果使活性污泥呈黏性的凝胶状,在二沉池内无法进行有效的泥水分离及浓缩,因此这种污泥膨胀有时又称为黏性膨胀。第二种非丝状菌膨胀是由于进水中含有大量的有毒物质,导致活性污泥中毒,使细菌不能分泌出足够的黏性物质,形不成絮体,因此也无法在二沉池进行有效的泥水分离及浓缩。这种污泥膨胀有时又称为非黏性膨胀或离散性膨胀。
二、高F/M导致的非丝状菌膨胀案例
我公司是煤化工废水,采用了二级AO脱氮工艺,平常在A池中投加甲醇作为碳源,甲醇存放在容积1立方的药剂桶内,晚上药剂桶底部阀门脱落,大量甲醇进入系统,现在曝气池有很多泡沫,如图,SV涨到90以上,二沉池出水带泥,而且出水COD和氨氮超标。(更多案例请到污托邦社区交流)
1、案例分析
该案例发生在楼主的公司,甲醇储罐是临时拖来的药剂桶,底部排放阀人为改造了一下,导致不牢固脱落,大量甲醇进入系统,甲醇在A池消耗不了进入曝气池,导致非丝膨胀,异养菌代谢不了的碳源,随着推流排出系统,导致COD升高,细菌分泌在水中粘性多糖在曝气的作用下形成堆积性泡沫,因为异养菌的大量繁殖争夺氧气,使硝化反应受到影响,导致出水氨氮升高。
2、高负荷非丝状菌膨胀的判断
该案例着重讲一下高负荷非丝状菌膨胀时产生的泡沫的形态,因为此形态更能直观的判断,通过其形态就可以判断系统出现的问题,这就是中医“望闻问切”中的望!
a. 颜色:正常健康的系统冲击性泡沫的颜色为亮白色,但是如果之前系统污泥就部分解体,之前活性不强而解体的活性污泥会吸附在泡沫上,使泡沫带颜色,所以说颜色不是判断冲击泡沫的要点!
b. 体态:泡沫大小不一,泡沫粘性较大,大气泡形状一般被拉伸成椭圆状,而气泡不破,这是判断冲击性泡沫的关键点,也是和表面活性剂泡沫的不同之处!
c. 堆积性:堆积性很好,最高可达一米以上,而且很轻,风大会将其刮出池子。
三、非丝状菌膨胀的控制
1、负荷和溶解氧的影响
采用城市污水负荷为0.4kgBOD5/(kgMLSS·d)~0.8kgBOD5/(kgMLSS·d),溶解氧浓度1.0mg/L~2.0mg/L,污泥龄为20天的完全混合曝气池(截面积1.0m2,高3.0m)。第一阶段由于丝状菌的过度增殖,SVI从280mL/g上升到800mL/g,污泥浓度下降至0.68g/L,二沉池中污泥不断流失。
一般认为在溶解氧为1.0mg/L~2.0mg/L条件下运行的曝气池不会发生污泥膨胀,而试验中溶解氧浓度一直维持在这一水平,仍然发生了污泥膨胀。在第二阶段,从第16天提高溶解氧浓度至3.0mg/L~5.0mg/L(平均4mg/L)可以观察到SVI很缓慢地逐渐下降,污泥浓度不断上升,在大约25天后,污泥浓度逐渐回升到1.5g/L,这时SVI下降到300mL/g。一般污泥膨胀发生速度很快,只要2~3天,而膨胀污泥的恢复很缓慢,往往需要3倍泥龄以上的时间。在一个污泥龄的时间内,观察到污泥沉降性能的明显改善。
2、加填料控制污泥膨胀
在生产性曝气池头部加占总池容15%软填料,与传统工艺不加填料时的SVI对比。加设软性填料系统总停留时间为4h,负荷在0.4kgBOD5/(kgMLSS·d)~0.8kgBOD5/(kgMLSS·d)之间。在曝气池供氧充足的条件下(气水比(3.7~5)∶1),加填料可很好地控制膨胀现象。传统曝气池在相同条件下的运行,在后期停留时间延长1倍。负荷降低1倍,SVI仍在200mL/g ~500mL/g之间,远高于加填料系统(SVI平均在100mL/g左右)。从填料池的分析来看,填料上附着生长的微生物以硫丝菌、021N型菌丝状菌为主。填料池对有机酸的去除率高达80%,对COD去除率为50%,H2S从3.67mg/L降至0.77mg/L。从而去除了丝状菌的生长促进因素,有利于絮状菌的生长。
事实上,填料池也相当一个选择器,其将丝状菌固着于填料上在第一个池子中选择性地充分生长,但不进入活性污泥絮体之中。而絮状菌在第二个池内生长,从而避免了污泥膨胀的发生。其主要的作用是降低污水的有机负荷,菌膜的脱落是次要因素。对于有机负荷的降低,是从两方面进行,首先是对有机物的直接去除,这个作用在分设的填料池中最为明显。其次是填料上生长的微生物量,增加了系统中总的生物量,从而降低了有机负荷。加填料控制污泥膨胀的方法很简单,但缺点是增加了一定的投资,还有填料的更换问题。一般适宜小型污水处理厂使用,而大型污水处理厂一般不宜采用。
3、池型和曝气强度对污泥膨胀的影响
对城市污水在高负荷下进行如下对比试验,负荷同为0.4kgBOD5/(kgMLSS·d)~0.8kgBO D5/(kgMLSS·d),停留时间为4h,气、水比为(3.4~5)∶1。在试验中发现呈推流式曝气的SVI要比同样运转条件下的完全混合曝气池的高100左右。在试验中气、水比为3.5∶1的情况下,推流式曝气池的SVI上升到450mL/g左右,二沉池污泥面不断上升,污泥溢流,发生污泥膨胀。强制排泥后,污泥浓度不断下降。这时增加曝气量之后,虽SVI略有下降,但由于污泥浓度恢复较慢。负荷比初始值要大的多,接近1.0kgBOD5/(kgMLSS·d),SVI最终仍在350mL/g左右。
这个试验不但说明了溶解氧(宏观)在控制污泥膨胀中的重要作用,同时说明曝气池中实际 (微观)的溶解氧浓度的不同对于膨胀的影响。在两个池子停留时间、曝气量、水质、负荷等完全一致的情况下,产生差别的原因是由于推流式曝气池首端的溶解氧浓度,在整个试验期间里一直等于零。而在完全混合曝气池中溶解氧浓度为2.0mg/L。这表明在高负荷的曝气池的运转中,推流式曝气池不利于改善污泥沉降性能。因为当污水中存在大量容易降解的物质,使得曝气池氧的利用速率加快。造成氧的供应速率低于氧的利用速率,特别是在曝气池头部更加严重。
在这种情况下使氧成为限制因素,即使在曝气池其它部位溶解氧浓度为1.0mg /L~2.0mg/L仍然发生膨胀。其原因在于首端负荷过高,严重缺氧造成丝状菌从絮体中伸展出来争夺氧气,同时在后段的丝状菌由于可以从主体溶液中直接吸取营养,比絮体本身中的菌胶团菌有更高的生长速率,从而得到充分的增殖(充分伸展的丝状菌阻碍了污泥的沉降)而造成了膨胀。从试验结果来看,在曝气池头部的溶解氧保持在2.0mg/L(强化曝气或再生池) ,可以有效地控制污泥膨胀。
4、回流污泥射流强化曝气
在以上研究和分析的基础上,在推流曝气池的首端采用回流污泥经过射流曝气器进行强化曝气,并辅以原有的中微孔曝气器,这时首端小池的溶解氧从零提高到1.6mg/L,解决了首端供氧不足的矛盾。因而,SVI值不断下降至160mL/g,这时射流携带空气量很小。通过对回流污泥单独射流和增加曝气量的试验结果的比较,可以得出如下结论:回流污泥射流对于污泥膨胀的控制作用,不是由于射流过程中对于絮体的切割,造成丝状菌长度及生态环境变化而造成的结果,而是由射流过程中高的传质效率,提供了充足的溶解氧。在曝气池首端造成了有利于菌胶团菌生长的条件,抑制了丝状菌的生长,从而控制了污泥膨胀。在首端强化曝气可采用回流污泥射流,也可采用加大首端曝气强度(供气量)。从试验结果来看,其对污泥膨胀的控制作用是十分有效的。这就为高负荷类型的污泥膨胀的控制提供了多种选择方案。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
碳源投加过量(冲击)为什么会膨胀?碳源冲击后的膨胀又叫非丝状菌膨胀,为什么叫非丝状菌膨胀?因为原因不是丝状菌过量繁殖导致的膨胀,但是膨胀表现却和丝状菌膨胀的情形差不多,都具有沉淀性能严重下降,二沉池跑泥严重,SV最高可达90%。具体说下两者的区别,非丝状菌膨胀是因为过高的碳源进入系统
01啥是非丝状菌膨胀?非丝状菌膨胀是污泥膨胀问题中除去丝状菌膨胀之外的情况,外观看起来跟丝状菌膨胀的情形差不多,都表现为污泥沉降性能严重下降。03如何应对?非丝状菌膨胀可以通过镜检、SVI值进行判断。发生膨胀,作为应急措施,一般会选择投加助沉剂或者是杀菌剂,但这是治标不治本的方法,且投
污泥膨胀是活性污泥工艺中常见的一种异常现象,是指活性污泥由于某种因素的改变,沉降性能恶化,污泥随二沉池出水流失。发生污泥膨胀以后,流失的污泥会使出水SS超标,如不采取控制措施,污泥继续流失会使曝气池的微生物量锐减,不能满足氧化分解污染物质的需要。活性污泥的SVI值在100左右时,其沉降性
【社区案例】我这边是颜料废水,SV30控制在60,经验是说泥量增长缓慢所以前期基本没排泥,现在SV30涨到80-90了,现在开始排泥了,但也是少量的。现在是氨氮有些上涨了,会是排泥造成的吗?(溶解氧控制在4左右)其他指标还可以COD和TN。(来源:污托邦社区)要保证硝化的正常进行,需要保证一定的硝化
近日,受强冷空气影响,我国自北向南经历了一轮大范围寒潮降温过程,此次降温造成一场席卷全国的降雪,对人们的出行及生活产生了影响,在清雪处置中撒融雪剂是最常用的手段,融雪剂的主要成分通常包括氯化钠、氯化钙、硝酸钠、硝酸钙等,统称为无机盐,这些成分进入污水处理厂,会导致进水含盐量增加,
2023年12月中旬以来,我国天气形势异常复杂,集中出现了寒潮、雨雪、低温、冰冻等各类冬季灾害性天气。这对污水处理而言,带来了哪些挑战?需要提前做好哪些准备工作?带着这些问题,本报记者采访了业内人士。气温“骤降”和“慢慢下降”的考验值有何不同?2023年12月,我国的气温起伏可以用“过山车”
在活性污泥法的应用过程中,其处理效果会受到污泥回流比、曝气时间、污泥负荷、污泥沉降比、MLSS等因素的影响。因此,需要基于污泥沉降比作为指标来监控处理情况。SV(污泥沉降比),即在1000mL(也有显示为100mL)的曝气池混合液中,经过静置、沉淀之后,污泥和混合液之间的体积比。污泥沉降比能够表
目前,国内外通用的污水处理技术主要是采用活性污泥法,此方法具有处理彻底、有机物降解率高、二次污染小、能耗低和运行管理方便等优点。但也存在微生物对环境的适应有要求,特别是水温受自然环境影响的问题较难解决。冬季运行具有水温低、污泥活性较弱等特点,增加了活性污泥的处理难度,不利于污水处
活性污泥法是利用悬浮生长的微生物絮体处理污水的一类处理方法。为什么叫活性污泥?活性污泥基本概念是1912年英国的克拉克(Clark)和盖奇(Gage)发现提出的。他们对污水长时间曝气会产生污泥,同时水质会得到明显的改善。继而阿尔敦(Arden)和洛开脱(Lockgtt)对这一现象进行了研究。曝气试验是在
1923年,上海第一座污水处理厂建成,由此拉开了上海污水处理的序幕。历经百年发展,上海从解放前的3座污水处理厂,3.55万吨/日的处理量,发展成为目前六大片区43座污水处理厂,处理规模超1000万吨/日,上海城市水环境面貌焕然一新。水处理行业的飞速发展为改善水环境、保障水安全发挥了强有力的支撑作
【社区案例】活性污泥中微生物生长的C:N:P比值为100:5:1;而脱氮时要求C:N在4~6?100:5:1和4~6这个数据是怎么来的,为什么?一、CNP比100:5:1是怎么来的?CNP比100:5:1的比例是针对于好氧除碳工艺的营养比!而非厌氧与脱氮工艺的CNP比!100:5:1比例的来源:说法一:McCarty于1970年将细菌原生质
曝气池(aerationbasin)是人们按照微生物的特性所设计的生化反应器,污染质的降解程度主要取决于曝气池的运行管理。一、曝气池运行管理——常规监测1、温度好氧活性污泥微生物能正常生理活动的最适宜温度范围是15-30℃。一般水温低于10℃或高于35℃时,都会对好氧活性污泥的功能产生不利影响。当温度
序批式间歇活性污泥(SBR)工艺具有占地省、运行方便灵活等优点,但存在脱氮除磷效率不高、沉淀阶段直接出水水质不稳定等问题,无法满足高排放标准。随着国家城市水环境提升、黄河流域高质量发展等行动计划的加速,污水处理厂出水需要由一级B提标至一级A或更高标准排放,SBR工艺的污水处理厂均面临提标改造。
【社区案例】我们是处理屠宰废水的,放了15天年假,想请教各位老师,好氧池,每天闷曝两小时,加面粉葡萄糖,可不可以?当工厂春节假期停止生产时,污水处理只能停止运行,如何让停运后的污泥能保证活性,停产结束启动运行时能快速恢复,保证达标排放是停产期间控制的要点。一、停产时间的运行控制要点
最近,有小伙伴反馈,自己的污水处理系统又开始出现膨胀了,每年都会这样,很有周期性!其实,很多污水处理系统在温度高的夏季和寒冷的冬季都不会出现严重的污泥膨胀情况,往往出现在每年的春夏、秋冬换季时。即发生在气温、水温和气压交变的环境。在分析一些污水处理厂的统计数据后,发生泡沫现象的时
一、什么是好氧颗粒污泥?好氧颗粒污泥(AerobicGranularSludge),简称AGS,是通过微生物自凝聚作用形成的颗粒状活性污泥。与普通活性污泥相比,它具有不易发生污泥膨胀、抗冲击能力强、能承受高有机负荷,集不同性质的微生物(好氧、兼氧和厌氧微生物)于一体等特点,近年的研究成果表明AGS能用于处
一、什么是好氧颗粒污泥?好氧颗粒污泥(AerobicGranularSludge),简称AGS,是通过微生物自凝聚作用形成的颗粒状活性污泥。与普通活性污泥相比,它具有不易发生污泥膨胀、抗冲击能力强、能承受高有机负荷,集不同性质的微生物(好氧、兼氧和厌氧微生物)于一体等特点,近年的研究成果表明AGS能用于处
活性污泥随水流失,从系统运行来讲,我们习惯的思维认为是二沉池存在问题,因为漂出的活性污泥来自二沉池出水,在巡查二沉池的时候,我们能够发现二沉池出水中含有细小颗粒,特别是颗粒流出二沉池锯齿堰的瞬间能够清楚地观察到颗粒大小和数量。
活性污泥系统异常问题及其解决办法
MBBR的基本设计思想是能够连续运行,不发生堵塞,无需反冲洗,水头损失较小并且具有较大的比表面积。这可以通过生物膜生长在较小的载体单元上,载体在反应器中随水流自由移动来实现。在好氧反应器中,通过曝气推动载体移动;在缺氧/厌氧反应器中,通过机械搅拌使载体移动。
污水系统常见的异常、产生原因及解决方法。
污泥膨胀是活性污泥处理工艺中常见的一种异常现象,是指活性污泥沉降性能恶化,随二沉池出水流失。发生污泥膨胀时,活性污泥SVI值(1g干污泥所占体积,ml/g)超过150时,预示着活性污泥即将或已经为膨胀状态,应当立即采取控制措施。
对于污水厂来说,污泥膨胀和泡沫就像顽疾一样,总是在不断地反复的滋生和爆发。这种工艺异常的现象在不同的地区,不同的工艺,不同的水质的污水厂都会发生,运行人员总是要面对过高的污泥沉降比和满池的泡沫而发愁,特别是遇到上级的领导到厂检查时,总是有种百口莫辩的无力感,即使出水水质稳定达标,仍然不能让领导们信服污水厂在正常运行。
针对医药化工废水治理方法的使用问题,应进一步提出科学的解决措施,提升废水治理水平。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!