登录注册
请使用微信扫一扫
关注公众号完成登录
图1 土壤热处理试验装置示意图
Fig.1 Experimental apparatus of thermal treatment
1.3 测定项目及方法
1)土壤中石油烃类的测定。采用气相色谱仪(7890A -Agilent Technologies,美国)配置火焰离子化检测器(FID)测定不同处理组样品中石油烃的残留量。准确称取土壤样品2.0 g和等量无水硫酸钠,用二氯甲烷超声萃取30 min,离心取上清液过滤至茄形瓶;土壤重复萃取2次后,将茄形瓶内的有机溶剂旋蒸至干,加入10 ml正己烷溶洗内壁并取1 ml过层析柱(用5 ml正己烷润湿的4 g弗罗里硅土和1 g无水硫酸钠),用5 ml正己烷洗脱,收集洗脱液于刻度管中,用氮吹仪吹干;加正己烷溶解定容至1 ml,过0.22 μm有机滤膜于棕色进样瓶中,待测。
参数设置:色谱柱选用HP-5石英毛细柱(长度×内径×膜厚:30 m×0.32 mm×0.25 μm),进样口和检测器温度300 ℃,柱流量为1.5 ml/min,程序升温:初始温度60 ℃,保持1 min,以15 ℃/min升至250 ℃,再以10 ℃/min升至300 ℃,保持25 min。
2)土壤中挥发性和半挥发性有机污染物的测定。将热处理后的150 g土壤样品(3组50 g土壤样品在相同条件下经过热处理后混合制备所得),顶空密闭保存,并低温送至澳实分析检测(上海)有限公司进行分析,其中挥发性有机污染物的测定采用HJ 605—2011方法,半挥发性有机污染物的测定采用HJ 834—2017方法。
3)土壤全碳和全氮的测定。将试验土壤样品过60目筛,取0.5 g送至中国科学院南京土壤研究所分析测试中心测定。测定仪器:C/N分析仪(德国Elementar仪器有限公司)。
4)土壤硝态氮和铵态氮的测定。硝态氮和铵态氮的测定采用2 mol/L KCl提取的方法进行。称取3 g土壤样品,加入30 ml 2 mol/L KCl溶液,振荡1 h后离心,过滤上清液,待测。溶液中的硝态氮和铵态氮使用化学分析仪(Smartchem 200, Westco Co., 意大利)进行测定。
5)土壤结构性表征。采用扫描电子显微镜(S-3400N,日本Hitachi公司)对不同气氛条件热处理的土壤样品进行扫描和结构表征。
2 结果与分析
2.1 不同气氛热处理对土壤石油烃去除效果的影响
如图2所示,采用250 ℃对柴油污染土壤进行加热处理10 min,N2气氛下的总石油烃去除率最高,达99.19%,空气和CO2气氛下去除率略低,分别为98.36% 和98.04%。N2、空气和CO23种气氛下加热处理后土壤中石油烃残余量分别为49.54、100.67和120.31 mg/kg(石油烃初始含量6 217 mg/kg),达到国家建设用地土壤污染风险管控标准第一类用地筛选值(826 mg/kg)。以上结果表明,低温热处理可快速有效去除土壤中石油烃,并且在在N2气氛下去除效果最好。
图2 不同气氛热处理对土壤石油烃去除效果的影响
Fig. 2 Removals of petroleum hydrocarbons in contaminated soils under the low temperature thermal treatment with different atmospheres
(图中不同小写字母表示Duncan 多重比较处理间差异显著(P<0.05),下同)
2.2 不同气氛热处理对土壤碳含量的影响
如图3所示,低温热处理前(CK)柴油污染土壤全碳含量为13.9 g/kg,在N2、空气和CO23种气氛条件下250 ℃加热处理10 min后,土壤的全碳含量略有降低,分别为13.7、13.4和13.8 g/kg,气氛对全碳含量的影响按大小如下:空气、N2、CO2。CO2和N2为惰性气体,表明惰性气氛下低温热处理对土壤全碳影响相对较小。
图3 不同气氛热处理对土壤碳含量的影响
Fig. 3 Carbon contents in contaminated soils under the low temperature thermal treatment with different atmospheres
热处理前后土壤形态变化如图4所示。土壤未经热处里前颜色呈棕黄色,经过热处理后的土壤颜色出现不同程度地变黑,与柴油热解产生的热解炭会使土壤颜色变黑的现象一致。从图4A可以看出,未经热处理的土壤颗粒表面片层结构明显,而不同气氛条件热处理后土壤颗粒表面片层结构减少(图4B ~4C),且局部出现均质性颗粒膜现象(图4D)。从土壤颜色变化和结构表征出现的现象推断,经热处理后的污染土壤表层可能产生了焦炭膜,这进一步验证热处理过程中生成了热解炭。
图4 未经热处理(A)和经N2(B)、空气 (C) 、CO2(D)气氛热处理后土壤的形态变化
Fig. 4 Morphology of unheated soil (A) and heated soils under N2(B), air (C) and CO2(D)
2.3 不同气氛热处理对土壤氮含量的影响
表1显示为不同气氛热处理对土壤全氮、硝态氮、铵态氮含量的影响,可见,3种气氛热处理后土壤全氮含量均有所增加,其中在N2气氛条件下土壤全氮含量最高,增加至0.900 g/kg;硝态氮和铵态氮受不同气氛影响明显,在N2气氛条件下,铵态氮和硝态氮含量分别为57.85 mg/kg和19.86 mg/kg,约是未加热污染土壤的6.4倍和16.1倍;而分别通入空气和CO2时,铵态氮的含量分别降低至3.24mg/kg和2.65mg/kg,硝态氮的含量分别降低至0.04 mg/kg和0.03 mg/kg。
表1 不同气氛热处理对土壤全氮、硝态氮、铵态氮含量的影响
Table 1 Contents of total nitrogen,in contaminated soils under the low temperature thermal treatment with different atmospheres
注:硝态氮为硝态氮+亚硝态氮(以氮计);**表示与对照组差异性显著(P<0.01)。
2.4 不同气氛热处理对土壤中挥发/半挥发性有机污染物组分的影响
柴油是混合组分,主要包含直链烷烃和部分芳香烃,相对于直链烷烃,芳香烃有更高的毒性。测定柴油污染土壤样品中挥发性有机污染物含量(表2)发现,柴油污染土壤含有少量(均不超标)挥发性有机物,主要为间-二甲苯、对-二甲苯、1,2,4-三甲苯、1,3,5-三甲苯、正丙苯、正丁基苯、仲丁苯单环芳香烃等。对比低温热处理前后检出的有机污染物种类及含量,发现热处理能有效去除或减少土壤中的挥发性有机污染物,在N2和空气气氛条件下,热处理后仅有1,2,4-三甲苯检出,而CO2气氛条件下,其残留量为0.73 mg/kg,去除率为67.4%。甲苯、乙苯在低温热处理前污染土壤中未检出,CO2气氛热处理后有检出,同时检出二甲苯、正丙苯及1,3,5-三甲苯等。
土壤中半挥发性有机污染物含量如表3所示。在加热处理前,萘、菲等16种多环芳烃均未检出;经过250 ℃热处理10 min后,3种气氛下均检出菲,其中CO2气氛下,菲含量最高,达1.55 mg/kg;在空气和CO2气氛下,还检出2-甲基萘,分别为0.28、2.15 mg/kg。
3 讨论
在柴油污染土壤热处理中,加热温度和加热时间是影响石油烃去除率非常重要的两个因素。基于本实验室前期研究,本研究对柴油污染土壤进行250 ℃加热10 min处理,结果显示,通入N2、空气和CO23种气氛对柴油污染土壤中石油烃的去除率影响较小。有研究表明,CO2的高比热性,使得土壤的热解温度降低,热解速率变慢,在一定的时间内污染物的去除量变小,这与本研究中柴油污染土壤在CO2气氛条件下石油烃残余量略高于N2气氛的结果相一致。
表2 不同气氛热处理后土壤中挥发性有机污染物含量(mg/kg)
Table 2 Contents of volatile organic compounds in contaminated soils atter the low temperature thermal treatment with different atmospheres注:表中BD代表未检出。
表3 不同气氛热处理后土壤中半挥发性有机污染物含量(mg/kg)
Table 3 Contents of semi-volatile organic compounds in contaminated soils atter the low temperature thermal treatment with different atmospheres注:其他14种半挥发性有机污染物在所有样品中均未检出(BD)。
土壤中碳含量受有机碳的影响较大,有机碳降低的程度通常与加热的温度和时间相关,石油污染土壤的热解温度在250 ~ 600℃时,土壤中有机碳含量降低,在250 ~ 300℃下热解的石油污染土壤有机碳含量高于未处理的石油污染土壤。当温度在300 ℃以下时,土壤有机碳变化相对稳定。Vidonish等的研究证实,柴油污染土壤在低温热处理过程中发生炭化,会在土壤表层产生焦炭膜,使得热处理后的土壤仍保留较高的碳含量。在本研究中,柴油污染土壤低温热处理后,经总石油烃分析、挥发性和半挥发性有机污染物全扫,柴油污染物大部分被去除,但是全碳含量相比热处理前最大损失量仅3.56%,表明土壤表层可能产生了焦炭膜,从而稳定了土壤碳含量。
氮素是表征土壤生态健康状况的重要指标,也是污染土壤修复后生态恢复能力关切的因素,一般土壤中全氮含量约为0.05% ~ 0.2%,污染土壤中全氮含量占0.08%,在正常指标范围。本试验表明,不同气氛条件下,热处理后全氮含量均有所增加,其中N2气氛下增加12.5%,这与Glass等的结果一致。李建奇研究表明,氮含量的增加能够促进作物根系生长,提高作物水分利用率,从而提高作物产量和增加作物品质。柴油污染土壤经热处理全氮含量增加,一定程度上有利于提高土壤的生态利用质量。污染土壤在空气和CO2气氛下,铵态氮和硝态氮含量受热分解,导致氮含量大幅减少,与Ren等和Becidan等研究相一致。
苯系物是柴油污染土壤中最主要的挥发性有机污染物,如二甲苯、三甲苯等,此类污染物沸点多在200 ℃以下,在加热条件下,挥发性有机物逐渐形成,随着气氛尾气挥发,达到去除污染物的目的。CO2气氛条件下加热后土壤中残余少量挥发性有机物,一方面由于苯系物在土壤中受到赋存状态、土壤孔隙等影响,少量苯系物较难去除;另一方面由于柴油在CO2气氛中热解所需要的活化能大于在N2气氛中热解所需要的活化能,降低了热处理过程中污染物热解速度,同时也为热处理过程中副产物的生成提供了可能。甲苯、乙苯在热处理前土壤中均未检出,经CO2气氛热处理后有检出,根据赵龙的推断,柴油类燃料在热解过程中能通过本位加成反应的途径生成甲苯等,本文推测甲苯和乙苯为柴油类燃料初始分解过程中的产物。热解温度是影响多环芳烃生成的一个重要因素,当热解温度较低时,芳香族化合物通过脂肪族或氧桥连接而成。李晓东等通过空气和N2进行热解煤生成的多环芳烃变化趋势相似,但在热解过程中有氧参与反应则会增加自由基浓度,从而使多环芳烃含量增加。本研究中多环芳烃类污染物在柴油污染土壤热处理前均未检出,但已有研究表明柴油污染土壤中邻-二甲苯的苯环结构使得邻-二甲苯具有较强的芳烃生长能力和生成趋势,如邻-二甲苯分子的邻位双甲基结构可促进双环芳烃的生成,继而向更大分子量的多环芳烃生长。据此,推测本研究分别在热处理后的土壤中检出萘、菲等芳烃物质是邻-二甲苯等在热解过程中生成的中间产物,下一步研究应进一步确定在此温度条件下产生次生污染的机制。
4 结论
石油烃含量为6 217 mg/kg的柴油污染土壤,经N2、空气、CO23种气氛低温热处理,石油烃的去除率均达到98% 以上,其中空气气氛下去除率为98.36%,为实际场地修复通入空气的可行性提供了可靠的理论依据和技术支撑。热处理后,土壤中石油烃残留量在土壤环境质量建设用地土壤污染风险管控标准第一类用地筛选值(826 mg/kg)以下,满足柴油污染土壤修复的需求。
柴油污染土壤在不同气氛条件下加热处理后,全碳含量相比热处理前最大损失量仅3.56%,热处理前后相对稳定,可能是因为柴油污染物在低温热处理过程中,会在土壤表层产生焦炭膜,使得热处理后的柴油污染土壤仍保留较高的碳含量。在N2气氛加热条件下,土壤中有机氮被转化为铵态氮和硝态氮,使二者含量大幅增加,一定程度上有利于提高土壤的生态利用质量;而在空气、CO2气氛条件下,铵铵态氮和硝态氮被热解,导致含量下降。
柴油污染土壤在空气和N2气氛条件下热处理后,主要的苯系物被挥发或热解;CO2气氛条件下仍残留少量污染物;3种不同气氛条件下对土壤250 ℃处理后,有低分子量多环芳烃生成。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星固废网获悉,广东省人民政府发布关于征求《广东省污染土壤危险特性鉴别技术指引(试行)》(征求意见稿)意见的公告,本指引,规定了污染地块治理与修复过程中需按照固体废物进行管理的污染土壤危险特性鉴别程序和技术要求,为污染土壤危险特性鉴别方案、鉴别报告的编制及技术审查提供指引。为规
近日,为加强北京市市政基础设施工程质量管理,促进市政基础设施工程质量的提高,推进技术创新、管理创新,推广应用新技术、新材料、新工艺、新设备,促进企业科技进步,提升企业管理水平,鼓励企业科技进步,北京市政工程行业协会对2023年度北京市政科技创新成果进行了表彰。高能环境两项技术成果“多
3月14日,佛山照明禅城总部厂区(中区、北区)地块土壤修复招标,最高投标限价16905.17万元,招标范围为北区地块污染土壤修复总土方量约32736.12m3,污染深度最深约8m;中区地块污染土壤修复总土方量约58709.3m3,污染深度最深约7m。
2024年3月13日,重庆中渝电镀有限公司原址场地及影响区污染土壤治理修复项目EPC总承包招标,工程总投资额1379.92万元,本项目合同估算金额1054.76万元,本项目总占地面积约15772平方米,建设规模为土壤开挖、场内短驳29055立方米,污染土壤外运至水泥厂处置9592吨,桩板挡墙588.9立方米,场地清表及外运
3月15日,衡阳三塘化工厂片区土地污染治理(南华大学创新创业基地)EOD开发建设项目一期(原万峰化工、宝丰化工、宏翔化工三家企业遗留废渣及污染土壤治理项目)项目中标结果公布,中标供应商为湖南凯迪工程科技有限公司,中标金额7261.497535万元,工期360天。招标人为衡阳弘湘国有投资(控股)集团有
3月5日,岳阳市九华山棚改区6#、13#、14#、15#地块土壤修复工程公布中标结果,中标单位为岳阳市长江水利水电建筑安装有限公司,中标价格为11201375.63元。九华山棚改地块(原磷肥厂、天润化工)污染土壤修复的建设内容包括:本项目共计4个地块,总红线修复面积约为124995.04m2,场地内地块污染土壤
2月27日,灌云县富源纸业有限公司污染地块土壤修复项目中标候选人公示,第一中标候选人为中冶天工集团有限公司。项目招标范围包括污染土壤及地下水修复治理、风险管控阻隔施工等。公示如下:灌云县富源纸业有限公司污染地块土壤修复项目中标候选人公示江苏建博工程管理咨询有限公司受灌云县燕尾港工业
2月9日,衡阳三塘化工厂片区土地污染治理(南华大学创新创业基地)EOD开发建设项目一期(原万峰化工、宝丰化工、宏翔化工三家企业遗留废渣及污染土壤治理项目)项目中标候选人公示:中标候选人第1名:湖南凯迪工程科技有限公司,投标报价7261.497535万元,工期360天;中标候选人第2名:北京高能时代环
近日,岳阳市九华山棚改区6#、13#、14#、15#地块土壤修复工程招标,最高投标限价1142.305254万元,不接受联合体投标。九华山棚改区6#、13#、14#、15#地块土壤修复工程招标公告1.招标条件本招标项目/标段九华山棚改区6#、13#、14#、15#地块土壤修复工程(项目/标段名称)已由岳阳市发展和改
2月8日,山东冠远能源科技开发有限公司(原青岛钢铁集团兖州市焦化厂)地块修复和管控项目招标,本项目招标范围为对现有地块污染土壤及地下水进行修复治理。该地块污染土壤面积为52927.28m2,污染土方量为219313.67m3。污染地下水面积约为29004.97m2,地下水污染量约为38722.26m3。根据项目未来开发需
2月8日,原华安钢厂地块污染土壤修复与管控项目工程总承包招标,本项目主要建设内容为拟对地块内的建构筑物进行清理处置,对污染土壤进行治理,对治理后的场地进行生态恢复。治理范围约176417.34平方米;治理污染土壤约352834.68立方米,其中异位稳定化治理污染土壤约88208.67立方米、原位管控污染土壤
日前,中国石油招标投标网发布吉林油田乾安采油厂历史遗留石油烃污染土壤微生物修复治理工程招标公告。详情如下:吉林油田乾安采油厂历史遗留石油烃污染土壤微生物修复治理工程招标公告招标编号:JLYT-ZBZX-2022-FW-0531.招标条件本招标项目招标人为中国石油天然气股份有限公司吉林油田分公司。招标项
北极星VOCs在线获悉,日前,广东省环境科学学会发布了关于《土壤气石油烃挥发性有机物污染快速筛查技术规范》团体标准项目立项的通知。
石油烃污染场地已经成为国内外重点关注的工业污染场地类型之一。国内基于人体健康风险的污染场地管理模式及分层次评估方法已经展现雏形,为风险管理者提供了基于人体健康的土壤石油烃风险筛选值和管制值,也为污染场地的防治与修复工作提供了决策支持。
总石油烃(totalpetroleumhydrocarbons,TPH)是烃总量的一个表征,包含各种烃类化合物,对人体具有极大的危害。通过对四川省某润滑油厂拆迁场地采样调查,分析了污染物分布特征,在明确未来规划用途的条件下,用分馏法以高碳石油烃毒性参数对污染地块的石油烃进行了风险评估。
对于新污染黄绵土,向土壤中加入有机肥、有机肥+KNO3对土壤中石油烃去除效果较好,修复150d时土壤中石油烃去除率分别为60.13%、56.09%;对于陈旧性污染土壤,施入有机肥+KNO3、脱硫石膏对石油烃去除效果较好,修复150d时土壤中石油烃的去除率分别为36.62%、36.61%;生物刺激对新污染土壤中石油烃的去除效率高于陈旧性污染土壤。
摘要:采用序批式(SBR)活性污泥法处理煤化工废水。通过分析不同周期、进水浓度、pH、温度、DO与处理效果之间的关系,确定了SBR法处理煤化工废水的的最佳运行参数。试验结果表明,在SBR处理周期为24h的条件下,进水CODCr为1200~1400mg/L,石油烃类为50~70mg/L,pH为6.8~7.1,DO为3.5mg/L左右
基本原理微生物修复技术是指通过向污染土壤或地下水中投加高效降解微生物或营养物质,同时为微生物创造适宜的水分、氧气、pH等生长条件,促进微生物降解环境中的有害物质或降低污染物毒性,达到修复目的。微生物、营养物质和生长条件是决定微生物修复成功与否的三个关键因素,由此也引申出了微生物修复
石油烃污染场地已成为国内外污染场地的关注类型之一。我国采油区主要污染物为石油烃和多环芳烃(PAHs);化工类园区及周边土壤的主要污染物为PAHs。为加强对土壤中石油烃类污染物的风险管控,生态环境部已将石油烃类列为土壤中主要污染项目并加以限制。近年来,我国土壤污染防治相关标准和技术规范在不
1月22日,高能环境公告,近日中标了两个重要项目,中标金额合计超2.6亿元。一方面,作为联合体成员单位,公司中标了“张集煤矿二期工程矿井水处理及资源化利用工程(EPC)工程总承包”,中标价约为1.87亿元,工期为327日历天。该项目由煤炭工业合肥设计研究院有限责任公司牵头。另一方面,公司作为联合
1月9日,浙江省生态环境厅印发《化工园区地下水污染风险管控效果评估指南(试行)》。详情如下:浙江省生态环境厅关于印发《化工园区地下水污染风险管控效果评估指南(试行)》的通知各设区市生态环境局:为贯彻落实《地下水管理条例》《浙江省土壤污染防治条例》,加强地下水污染防治,评估重点工业园
云南省生态环境厅印发2024年云南省地下水污染防治重点排污单位名录,其中包含88家地下水污染防治重点排污单位。云南省生态环境厅关于印发2024年云南省地下水污染防治重点排污单位名录的通知各州、市生态环境局:为贯彻落实《地下水管理条例》关于“地方人民政府生态环境主管部门应当按照国务院生态环境
北极星环境修复网获悉,安徽省和县生活垃圾填埋场地下水污染防控项目(EPC总承包)招标,项目工程总概算为9831.63万元,本项目最高投标限价为8235.90万元。项目主要建设内容包括:针对填埋库区及下游的污染地下水,开展修复和管控工程,涉及修复区域面积83324.84平方米。施工环节主要包括:施工准备工程
近日,生态环境部流域地表水-地下水污染综合防治重点实验室通过验收,重点实验室依托单位南方科技大学,围绕国家土壤与地下水重点任务开展工作,郑春苗任实验室主任。
近日,金科环境成功中标郑州市石佛水厂改造工程超滤和纳滤成套系统,处理规模:100,000m/d,处理工艺:BWD苦咸水淡化工艺技术包。石佛水厂是一座利用黄河侧渗水为水源的地下水处理厂,1995年建成通水,投入运行30年来,原有水源和制水工艺已不能满足城市发展需要,也无法满足高品质饮用水的需求。郑州
8月29日,青岛李村河北岸水质净化厂项目最后一个施工区域完成混凝土浇筑,标志着项目主体施工已全部完成,顺利实现主体结构封顶,比原计划提前一个月进入安装阶段,为2024年底实现通水目标打下了坚实基础。青岛市李村河北岸水质净化厂项目是青岛市2024年“两个清零,一个提标”重点项目之一。项目建设
生态环境部8月6日发布国家重点研发计划“大气与土壤、地下水污染综合治理”等3个重点专项2024年度项目申报指南,申报内容包含“大气与土壤、地下水污染综合治理”、“典型脆弱生态系统保护与修复”、“循环经济关键技术与装备”。详情如下:生态环境部关于发布国家重点研发计划“大气与土壤、地下水污
近日,由中建四局承建的兰州七里河安宁污水处理厂改扩建项目正式对外开放。项目占地162亩,总建筑面积近20万平方米,最大基坑深度20.3米,采用地埋式改良A2O+MBR膜工艺建设,建成后每天可处理40万立方米的污水,地面以上为景观绿地公园。这座目前全国第二、西北地区规模最大的全地埋式MBR污水处理厂,
近日,全国首例深层地下水回补抵御海水入侵试验项目在河北开工建设,项目位于深层地下水超采和海水入侵问题叠加的唐山市乐亭县沿海区域,建设深层水回补试验场,依托区域内已建成的海水入侵监测体系,结合地下水开发利用监测成果,开展深层水回补抵御海水入侵试验研究工作,在对回补区水文地质、地下水
安徽省生态环境厅发布2024年土壤、地下水污染防治和农村生态环境保护工作要点,目标2024年,重点建设用地安全利用得到有效保障,优先监管地块基本实现污染管控;地下水国控点位Ⅴ类水比例控制在27.5%左右,“双源”点位水质保持稳定;农村生活污水治理率达到37%以上,新增完成1600个以上农村黑臭水体治
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!