登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
【社区案例】生化池只要有COD和氨氮是不是就不会曝气过度?DO高了对活性污泥有影响没,污泥自我氧化?
一、溶解氧(DO)的定义及理解
应该说,理论上来讲,当曝气池各点监测到的DO值略大于0(如0.01mg/L)时,可以理解为充氧正好满足活性污泥中微生物对溶解氧的要求。但是事实上,我们还是没有简单的将溶解氧控制在大于0的水平,而是应用教科书中的做法,把DO控制在1~3mg/L的范围内。究其原因还是因为,整个曝气池而言,溶解氧的分布和各曝气池区域内的溶解氧需求是不一样的。为了保守的稳定活性污泥在分解有机物或自身代谢过程中对溶解氧的需求,才将DO控制在1~3mg/L。
但是,实际操作和书面上固定僵化的DO理论值往往是不同的,不能只是依照书面上理论值,还要充分结合实际情况!
从实际情况看,发现在实际运行中,很多情况下将溶解氧控制在1~3mg/L是没有必要的,特别是控制超过3mg/L更是毫无意义,唯一的结果只是导致电能的浪费和出水中含有细小悬浮颗粒。所以,在根据书面理论同时要结合实际情况合理控制溶解氧。
二、溶解氧(DO)过高有什么影响?
以常用的活性污泥系统为例,每天供给曝气池的COD的总量与曝气池中活性污泥的总量之比即为食微比(其中供给的COD可以看作是提供给微生物的食物),食微比计算公式如下:
F/M=Q*COD/(MLVSS*Va)
式中:
F:Food 代表食物,进入系统的食物量(BOD)M:Microorganism 代表活性物质量(污泥量)Q:水量,COD:进出水COD的差值MLVSS:活性污泥浓度Va:曝气池容积
通常食微比的合适范围为0.1-0.25kgBOD5/kgMLSS.d之间,食微比过高说明微生物食物过剩,曝气池处于高负荷运行状态,食微比过低则曝气池处于低负荷运行状态。
食微比过高与过低会出现什么结果呢?
长期低食微比运行,可能导致污泥发生解絮,甚至诱发活性污泥丝状菌膨胀。当活性污泥出现老化现象并引发污泥发生解絮时,活性污泥絮体结构会变得较为松散,出水中会携带很多细小的污泥碎片,导致出水的清澈度下降,水质恶化。
了解完食微比以后,我们来看溶解氧对于处理效果的影响。高溶解氧会加快微生物的代谢作用。
当曝气池处于高食微比运行状态时,维持相对较高的溶解氧是有利的,可加快废水中有机物的降解速率。
当曝气池处于低食微比运行状态时,如果仍然维持较高的溶解氧,由于食物不足,会促使活性污泥内源代谢的加快发生,最终导致活性污泥解絮现象的发生,即通常所说的过曝气现象。
所以,在好氧系统的运行中,溶解氧浓度的控制应与食微比的控制密切相关,高食微比可控制较高的溶解氧浓度,促使有机污染物的有效降解。而相反,当食微比不足时,则应控制相对较低的溶解氧浓度,降低内源代谢的速率,以避免污泥老化及污泥解絮现象的发生,同时也可以降低电耗和节约运行成本。
三、溶解氧(DO)的控制依据及优化
主要依据:原水水质(有机物、氮、磷)、活性污泥的浓度、污泥沉降比、pH、温度、食微比(F/M)等进行控制。
当然,书面上给的理论值:一般好氧条件下溶解氧浓度为≥2.0 mg/L,厌氧条件下溶解氧浓度为≤0.2 mg/L,缺氧条件下溶解氧浓度为0.2-0.5 mg/L。具体还是要根据实际情况来把握。
1、原水水质:
一般原水中有机物含量越多,微生物分解代谢的耗氧量越多,以及硝化反应等对溶解氧的需求,所以控制溶解氧时要注意进水水量的变化和进水中有机物的含量。
2、活性污泥浓度:
在达到去除污染物、并到达排放浓度的情况下要尽量的降低活性污泥的浓度,这对于降低曝气量、减少电力消耗非常有利。同时,在低活性污泥浓度情况下,更要注意不要过度曝气,否则会出现污泥膨胀,使得出水混浊;当然,高的活性污泥浓度需要较高的溶解氧,否则会出现缺氧现象,使得污水处理效果受到抑制。
3、污泥沉降比:
过度的曝气会使细小的起泡附着在活性污泥的菌胶团上,导致活性污泥上浮到液面,使得污泥沉降性能变差。在实际操作中应该注意这个问题,特别是发生污泥丝状膨胀时候,更容易导致曝气的细小气泡附着在菌胶团上,继而导致液面出现大量浮渣。
4、pH:
通过对活性污泥浓度及微生物等的影响,间接的影响到溶解氧量。所以在污水处理控制时,除了要充分了解调节池功能外,还要与排放单位建立联系,了解污水水质情况,以便投加合适的试剂中和异常的pH。
5、温度:
不同温度下,污水中的溶解氧浓度不同,会对活性污泥浓度及微生物等产生影响。低温、高温都会影响水中溶解氧和微生物活性,使得污水处理效率低下。对于北方的低温,通常是建立地下或半地下室或室内处理;对于高温天气,则是通过调节池来调节池内温度进而提高处理效率。
6、食微比(F/M):
食微比越高,越低,需氧量相对就越高,这可以知道我们在水处理过程中通过食微比值来达到节能的目的,即在保证处理效果的前提下,尽量提高食微比,以避免不必要的曝气消耗。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
当前污水处理中的生物处理大多是采用与好氧相结合的处理工艺,溶解氧在实际的废水生物处理操作中具有举足轻重的作用,这一指标的不合适或波动过大,会迅速导致活性污泥系统受到冲击,进而影响处理效率。因此在实际生化处理工艺中,需严格控制溶解氧的含量。一、什么是溶解氧(DO)DO是溶解氧(Dissolve
【社区案例】生化池只要有COD和氨氮是不是就不会曝气过度?DO高了对活性污泥有影响没,污泥自我氧化?一、溶解氧(DO)的定义及理解应该说,理论上来讲,当曝气池各点监测到的DO值略大于0(如0.01mg/L)时,可以理解为充氧正好满足活性污泥中微生物对溶解氧的要求。但是事实上,我们还是没有简单
今年八月底,美国的水环境联合会(WaterEnvironmentFederation)公布了今年运行设计杰出奖的获奖名单,一共有三个获奖项目。水资源回收工厂案例Seneca水资源回收工厂(WRRF)由华盛顿郊区卫生委员会水务部(WSSCWater)公司运营。WSSCWater成立于1918年,是目前美国最大的供水和污水处理公司之一,服务人口超
当前污水处理中的生物处理大多是采用厌氧(缺氧)与好氧相结合的处理工艺,溶解氧在实际的废水生物处理操作中具有举足轻重的作用,这一指标的不合适或波动过大,会迅速导致活性污泥系统受到冲击,进而影响处理效率。因此在实际生化处理工艺中,需严格控制溶解氧的含量。溶解氧的测定,是水环境污染检测
这周继续围绕反硝化的工艺细节管理的相关内容和大家一起探讨。上周谈到反硝化的缺氧环境,除去进水在预处理段可能带来的非特定充氧以外,还有一项最重要的溶解氧来源就是内回流。内回流主要的功能是将好氧区完成的氨氮硝化后产生大量的硝态氮和活性污泥的混合液通过内回流泵带回到设置在好氧区前段的缺
通过公众号此前文章对生化池的曝气区域的运营管理细节进行了讨论,除了基于A2O工艺的曝气区域的细节管理以外,活性污泥还有其他类型的工艺变种,比如常见的SBR及其扩展系列CASS,CAST,CWSBR等等,整个系列的氧化沟工艺等。工艺类型的不同,但是核心都是活性污泥法,活性污泥中的好氧微生物所需要的好
好氧系统是污水处理常见的一个工艺单元,我们通过向好氧池供气,利用好养微生物分解有机污染物,于是有些人就认为“水中的溶解氧越高,好氧的处理效果就越好”,事实真的是这样吗?
当前污水处理中的生物处理大多是采用厌氧与好氧相结合的处理工艺,溶解氧在实际的废水生物处理操作中具有举足轻重的作用,这一指标的不合适或波动过大,会迅速导致活性污泥系统受到冲击,进而影响处理效率。因此在实际生化处理工艺中,需严格控制溶解氧的含量。1、溶解氧的概述溶氧(DO)是溶解氧(Diss
溶解氧的概念可以理解为水中游离氧的含量,用DO表示,单位mg/L。溶解氧在实际的污水、废水处理操作中具有举足轻重的作用,这一指标的恶化或者波动过大,往往会导致活性污泥系统的稳定性大幅波动,自然对处理效率的影响也非常明显。1、书面定义及实际操作的理解应该说,理论上来讲,当曝气池各点
1、AO脱氮工艺原理及优缺点A/O脱氮工艺是将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段(A池)异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)代谢为NH3-N,在曝气池中充足供氧条件下,在硝化细菌的硝化作用将NH3-N氧化为NO3-(
据外媒报道,近日,美国公用事业公司DominionEnergyVirginia提出了满足未来电力需求的方案,其中包括在弗吉尼亚州部署12GW光伏和4.5GW电池储能。这些提案包含在Dominion的2024年综合资源计划(IRP)中,该计划现已提交给相关委员会。虽然该文件没有列出具体的项目提案,但它为未来15年投资决策提供了框
美国公用事业公司DominionEnergyVirginia已向弗吉尼亚州公司委员会(SCC)提交2024年综合资源计划(IRP),计划在未来15年内,在其投资组合中新增12GW太阳能装机容量,这项太阳能发电计划意味着其目前运营和开发中的4.75GW发电量将增加150%以上。根据该计划,政府还提议新增3.4GW的海上风电和4.5GW的电池储
Han-Modular多米诺产品组合的新亮点--DominoRJ45模块!Han-Modular多米诺系列主要满足行业对节省安装空间和重量的要求。例如,多米诺模块的用户可以通过在一个模块中集成不同的传输类型来节省高达50%的安装空间。概念结构与传统RJ45模块相同,母头侧是所谓的插头转换器,可以插入标准RJ45线束进行连接
9月23日,双良节能与意大利ENERGYDOME(穹顶能源公司)在意大利米兰签订了战略合作协议,标志着双方将在新能源电站储能领域开启全面合作,共同助力双碳目标的实现。双良集团董事长缪文彬、双良节能战略发展部总经理王法根、双良双晖(上海)实业有限公司总经理任政、双良节能换热器事业部总经理杨征宇
日前,总部位于美国俄亥俄州的碲化镉薄膜太阳能电池板制造商ToledoSolar表示,将立即终止所有研发工作并逐步停止运营,ToledoSolar目前拥有一条100MW的模块生产线。据悉,致使该公司倒闭的原因是碲化镉薄膜太阳能电池板供应商FirstSolar于2023年对ToledoSolar提起的诉讼。诉讼称ToledoSolar以Toledo的
储能电池作为储能系统的基石,承载着为系统提供稳定、可靠能量的重要使命。深入了解储能电池的核心技术参数,有助于我们精确掌握其性能特点,进一步提高储能系统的整体效能。下面我们就对储能电池的主要技术参数进行详细解读,帮助大家更好地应用和管理储能系统。1.电池容量(Ah)电池容量是衡量电池性
据中伟股份官微消息,3月19日,中伟股份与韩国ISDongseo(株)签订区域合作协议,双方将在电池回收产品长期供货及共同营销方面开展深入合作。
3月6-8日,印尼SolartechIndonesia在雅加达会展中心盛大开幕,在这行业盛会中,迈贝特分享了创新技术和高效方案。展位A1F3-01重点展示了第五代水上漂浮系统、全挡风平屋顶矩阵系统、地面光伏系统、彩钢瓦夹具等产品,吸引了各国参会者和行业专家驻足,为异国带来专业的光伏经验交流。印尼展会每年吸引
总部位于意大利的EnergyDome公司是一家开发二氧化碳长时储能技术初创公司,该公司日前表示已经获得对电网规模储能项目的投资。EnergyDome公司的投资承诺总额为6000万欧元(6537万美元),将用于该公司在意大利撒丁岛部署的首个持续时间10小时的长时储能项目,该项目的规模为20MW/200MWh。EnergyDome公司
电站全生命周期的发电量和发电安全是决定一个电站优质的重要条件,风行电力科技(绍兴)有限公司在该方面不断深挖研究、不断创新,自SUNDODO4.0的成功后,SUNDODO5.0已正式发布!不仅在4.0版本的优点上有了新的突破。下面,我们将为您详细介绍这款备受瞩目的产品。商业光伏发电系统简介CommercialPhoto
2023年10月16日-19日,2023北京国际风能大会暨展览会(CWP2023)在北京如约召开。作为全球风电行业年度最大的盛会之一,这场由百余名演讲嘉宾和数千名国内外参会代表共同参与的风能盛会,再次登陆北京,聚焦中国能源革命的未来。本届大会以“构筑全球稳定供应链共建能源转型新未来”为主题,将历时四天
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!