登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
文章简介
资源回收是未来污水处理技术的发展方向,而剩余污泥逐渐被视为资源物质的载体。来自于微生物细胞自溶、细胞分泌物以及细胞表面脱落的胞外聚合物(EPS)占污泥干重的10~40%,主要由多糖、蛋白质、腐殖质、核酸、DNA等物质构成,可作为重金属吸附剂、防火材料、土壤改良剂、生物絮凝剂等,具有极高的附加值。同时,脱去EPS后剩余污泥的浓缩脱水性能亦增强,为污泥减量、焚烧等后续处理处置减负。因此,从剩余污泥中回收EPS具有重要的现实意义和广阔的应用前景。
重金属离子(HMI)通过污、废水排放、大气沉积、雨水侵蚀等方式进入水生环境,抑制微生物生长,直接或间接危害人类健康,已成为水环境中关键的污染物。吸附法是去除水溶液中HMI的主要方法,而EPS类似于腐殖酸、高分子物质和生物材料等吸附剂,在吸附HMI方面具有巨大潜力。通过静电吸引、络合、离子交换、表面沉淀等作用,EPS对水溶液中的HMI,如Pb2+、Cd2+和Cu2+具有强大的吸附能力。EPS吸附剂的开发与利用,有望替代商业吸附剂,实现污泥资源物质的高值利用。尽管EPS对HMIs具有很高的吸附性能,但是吸附了HMIs的EPS为胶态物质,从水溶液中分离困难。分离过程不仅增加额外的成本,而且可能带来二次污染。高分子物质(如多糖、蛋白质、溶解的有机物等)可以通过超滤(UF)进行有效分离,但是,离子尺寸的HMIs无法通过超滤膜截留去除。利用HMIs易被吸附在高分子物质上的特性,胶体或聚合物增强型超滤工艺(吸附型超滤工艺)已用污水中HMIs的去除,不同于传统吸附过程,吸附型超滤无需额外的末端处理,即可同步实现吸附与分离。
基于此,研究提出一种耦合EPS回收和HMIs吸附的死端超滤新技术(EPS-UF),如图1所示,首先通过超滤浓缩回收EPS,待浓缩完成后再原位利用截留回收于超滤膜上的EPS,过滤吸附去除污、废水中的HMIs。利用EPS-UF技术可同步实现EPS浓缩回收与HMIs去除,相关成果于2020年4月发表在《Journal of Membrane Science》杂志,相关技术已获国家发明专利授权(专利号:ZL201811549284.4),详细内容还可参考学术专著《污水中高分子物质的回收》(化学工业出版社,2021.10)。
EPS滤饼和HMIs的相互作用
EPS溶液超滤浓缩形成的滤饼(EPS-cake)和其吸附Pb2+后的产物(EPS-cake-Pb)的纵断面SEM图像(图3),表明其厚度分别约为11.6 μm和9.2 μm,即膜表面上的EPS-cake-Pb滤饼更薄,这是因为EPS-cake滤饼与HMIs相互作用导致滤饼结构变化或重新排列。
EPS-cake和EPS-cake-Pb的FTIR光谱图(图4)中均显示了多糖、蛋白质、脂质和核酸中的典型官能团,表明Pb2+没有改变EPS中的分子结构。对于EPS-cake-Pb,COO-的反对称伸缩振动峰(vascoo-)与对称拉伸振动峰(vscoo-)之间的距离变大,表明EPS中羧酸根以架桥形式与重金属离子作用。
EPS滤饼吸附Pb2+的机理,主要包括静电作用、络合作用、离子交换作用、表面沉淀等;XPS分析结果(图5)及由此获得的原子含量相对百分比(表1),表明Pb2+对EPS的亲和力比Ca2+、Mg2+和Al3+高。
高分辨率XPS扫描图(图6)获得的主要官能团含量(表2),表明羧酸盐和糖醛酸中羧基或酯基通过离子交换或络合作用与HMIs结合,以及EPS中蛋白质的酰胺和氨基基团通过络合作用与Pb2+结合。
Pb2+和EPS浓度的影响
Pb2+的去除率是HMIs初始浓度Ci0的函数,随Pb2+浓度的增加和过滤的进行,Pb2+的去除率降低;然而,当Pb2+浓度为10 μmol·L-1时,随过滤的进行,Pb2+的去除率保持在90%以上(图7)。
随Pb2+初始浓度的增加,Pb2+的平均去除率降低,但10 μmol·L-1时高达94.8%(图8)。
Pb2+初始浓度一定时Pb2+的平均去除率随EPS浓度的增加而增加,当EPS浓度大于0.1 g·L-1时EPS的回收率高于84.0%,Pb2+的平均去除率高于94.8%(表3)。
EPS滤饼层中吸附的HMIs的容量随过滤进行不断增加,直至达到吸附饱和,但是表现为上凸的关系曲线,即增加速率下降(图9)。这是因为EPS滤饼中的吸附位点数量是一定的,较高的Pb2+初始浓度则相应的绝对去除率较低。
图7 EPS-UF过程中随过滤进行Pb2+的去除率。ηi为Pb2+的去除率,CEPS为浓缩回收EPS溶液浓度,p1、p2分别为EPS浓缩回收阶段、HMI去除阶段的过滤压力,v为单位过滤面积上滤过的液体体积。
aηi= 100.0%,表示滤液中Pb2+浓度低于ICP的检出限
b添加4 mM Ca2+
c添加0.1 g/L硅藻土
过滤压力的影响
一般地,增加过滤压力可提高过滤速度,讨论各种过滤压力下EPS超滤浓缩回收和EPS-UF对HMIs的去除,如表4所示。当EPS超滤浓缩回收(第一阶段)时,虽然低过滤压力p1时初始过滤速率小,但第一阶段的过滤阻抗(Rt1)亦低;由于EPS滤饼的高可压缩性,随着过滤进行而Rt1值升高。EPS-UF对HMIs的去除过程(第二阶段),因EPS滤饼的可压缩性高,增加过滤压力p2至200 kPa并不能提高过滤速度,并且Pb2+的去除率显著下降(仅78.9%)。这可能是因为EPS和Pb2+之间的相互作用改变了EPS滤饼的结构和成分(图3)。值得注意的是,由于过滤过程中HMIs与EPS滤饼中金属离子的离子交换作用,造成EPS滤饼结构的变化,即出现随过滤的进行,第二阶段的过滤阻抗(Rt2)反而降低。
膜污染缓解策略
如图10所示,Ca2+作用时EPS浓缩回收过程(第一阶段)的过滤阻抗减小,而硅藻土助滤剂作用时过滤阻抗进一步降低。
无添加剂时的过滤速度低于Ca2+和硅藻土助滤剂作用时,表明Ca2+或硅藻土的作用不仅可降低第一阶段的过滤阻抗,也可以降低第二阶段的过滤阻抗(图11)。
Ca2+或硅藻土作用不仅可以减小过滤阻抗,并且对第一阶段的EPS回收率与第二阶段的Pb2+去除率的影响小(表3)。因此,硅藻土助滤剂和Ca2+可用于超滤浓缩EPS时改变膜表面形成的滤饼结构,使滤饼更疏松,从而控制膜结垢并降低过滤阻抗。
EPS-UF去除各种HMIs
实际的工业废水中通常含有各种HMIs。EPS超滤浓缩回收后,讨论EPS-UF过程对Pb2+、Cu2+和Cd2+的单一金属离子溶液以及由Pb2+和Cu2+构成的二元金属离子溶液的去除效果,如表5所示。EPS-UF过程可有效去除废水中各种HMIs,去除率均高于88.8%。由于EPS中含有多糖、蛋白质、腐殖质、核酸和DNA等多种物质,造成EPS滤饼与HMIs之间的相互作用机理极为复杂,亟待进一步揭示EPS-UF中各种HMIs的去除机制。
结语
本研究提出了一种新颖的胞外聚合物(EPS)浓缩回收与重金属离子(HMIs)去除耦合的超滤技术(EPS-UF)。从剩余污泥中回收的EPS的吸附性能可与商业吸附剂媲美,作为HMIs吸附剂具有极大的回收价值。较Ca2+、Mg2+和Al3+,Pb2+对EPS具有更高的亲和力;EPS-UF对Pb2+的去除,主要源于EPS滤饼对Pb2+的吸附。EPS中羧酸盐和糖醛酸的羧基或酯基,通过离子交换或络合作用与HMIs结合。EPS滤饼吸附Pb2+后,EPS中多糖、腐殖质、核酸和DNA等的主要特征基团保持不变,然而,因蛋白质中的酰胺基和氨基通过络合作用与Pb2+结合,生成了更多的复杂蛋白质。EPS超滤浓缩形成滤饼后,EPS-UF可以有效去除HMIs;0.1 g·L-1EPS溶液浓缩回收、10 μMPb2+溶液去除时,Pb2+的去除率达90%以上。EPS超滤浓缩阶段(第一阶段),尽管低压力时初始过滤速率小,但过滤阻抗亦低;EPS-UF去除HMIs过程(第二阶段)中,由于EPS滤饼的高可压缩性,较高的过滤压力(如200 kPa)下并不能提高过滤速度,而且Pb2+的去除率显著下降(仅78.9%),这是由于EPS和Pb2+的相互作用导致EPS滤饼的结构和成分变化。有趣的是,EPS-UF过程中随过滤的进行,因滤饼结构与成分不断变化,造成过滤阻抗不断降低。Ca2+和硅藻土助滤剂均可以减轻过滤阻抗,因Pb2+吸附后Ca2+可从EPS-Ca-cake中完全释放出来,且对EPS中特征官能团影响小,故建议采用Ca2+控制膜污染。EPS-UF过程可有效去除废水中Pb2+、Cu2+和Cd2+,去除率均高于88.8%。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
3月7日,国能天津公司津滨热电废水排放至污水处理厂技术改造EPC项目公开招标项目招标公告发布。天津公司津滨热电废水排放至污水处理厂技术改造EPC项目公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:天津公司津滨热电废水排放至污水处理厂技术改造EPC项目公开招标,项目招标编号为:C
3月1日,由中信环境技术牵头的联营体接管运营澳门路环污水处理厂项目。目前,中信环境技术联营体已接管了澳门半岛及路环两家处理能力最大的污水处理厂,占据了澳门污水服务市场超过70%的份额,这不仅彰显了中信环境技术在污水处理领域的技术实力和卓越的运营能力,更体现了澳门特区政府对其服务水平的
一、引言伴随工业化与城市化进程迅猛推进,污水排放量持续攀升,污水处理已然成为环境保护领域的核心议题。面对成分日趋复杂的污水,传统污水处理手段逐渐暴露出短板。在此背景下,臭氧高级氧化技术作为一种高效且环保的新型污水处理技术,备受瞩目。本文将深入剖析臭氧高级氧化技术在污水处理中的实际
随着长三角生态绿色一体化发展示范区先行启动区建设的深入推进,区域人口集聚与产业升级步伐加快,华为练秋湖研发中心等重大项目的落成带动用水需求激增,西岑水质净化厂于2025年1月正式投入商业运行。这一重大工程不仅标志着示范区基础设施升级迈出关键一步,更以科技赋能生态治理,为区域高质量发展
2月8日,北京经济技术开发区生态环境建设局发布《北京经济技术开发区采取特许经营模式的污水处理项目补贴标准(征求意见稿)》。详情如下:关于《北京经济技术开发区采取特许经营模式的污水处理项目补贴标准(征求意见稿)》公开征求意见的公告为贯彻落实《国家发展改革委办公厅关于进一步做好政府和社
1月16日,四川眉山高新技术产业园区污水处理厂三期项目(施工、运营)-标段中标候选人公示。中标候选人第一名:海天水务集团股份公司,报价:332512935.38元;中标候选人第二名:中原环保股份有限公司,报价:328737562.16元;中标候选人第三名:天津市融泰水务有限公司,报价:327966558.79元。本项目
在决胜“十四五”规划的收官之年,江苏省环保集团所属省环境工程技术有限公司与江苏泰州环保产业发展有限公司组成的联合体,成功中标高新区工业污水处理厂工程总承包(EPC)项目,实现2025年首季度“开门红”。这是泰州公司自成立以来,继九龙污水处理厂二期工程项目(1.61亿元)后中标的第二个亿元以
1月7日,安纳达发布公告,根据公司控股子公司铜陵纳源材料股份有限公司及所属子公司生产经营发展需要,子公司拟利用已有厂房和场地升级改造磷酸铁污水处理装置,新增调节池,购置膜系统和MVR蒸发系统,具备10万吨/年电池级磷酸铁生产的污水处理能力。该项目总投资计划人民币1.5亿元。
近日,中国城镇供水排水协会(简称“中国水协”)正式发布了2024年度中国水协科学技术奖励的决定,由中建环能科技股份有限公司牵头,中国科学院生态环境研究中心、嘉兴市联合污水处理有限责任公司等单位共同完成的“节碳型污水深度脱氮技术及模块化装备研发与应用”项目,荣获2024年度中国水协科学技术
据首创环保集团消息,近日,首创环保集团作为工艺包提供商,成功签约浙江海宁市丁桥污水处理厂设施设备更新提升工程项目。该项工程将采用首创环保集团自主研发的CREATE好氧颗粒污泥技术,对污水厂一期工程SBR生物处理技术进行原位改造,实现生物处理段处理水量由4万吨/日提升至7万吨/日。本次好氧颗粒
在攻坚奋战四季度的关键阶段,江苏省环保集团所属江苏环保产业股份有限公司传来喜报,成功中标昆山经济技术开发区工业污水处理厂项目,为年末收官添上了浓墨重彩的一笔。昆山经济技术开发区工业污水处理厂项目实施内容包括:新建2.8万m/d的昆山开发区工业污水处理厂(其中含氟废水预处理规模0.8万m/d)
一、污泥的种类污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。它很难通过沉降进行彻底的固液分离。污水处理产生的污泥是典型的有机污泥,其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006Kg/m),呈胶体结构,是一种亲水性污泥,容易管道输送,但脱水性能差。随
摘要:地球磷危机时代已经来临,唯有发掘“第二磷矿”才能有效遏制磷的匮乏速度。剩余污泥焚烧灰分是污水的磷汇,是实施磷回收的最佳位点。因灰分中重金属含量较高,实施磷回收需要将其分离并加以利用。否则,回收磷难以与矿物磷形成竞争。比较各种灰分磷回收方法发现,热化学法中的AshDec工艺可利用金
剩余污泥的排放是活性污泥工艺控制中很重要的一项操作,通常有MLSS、F/M、SRT、SV等方法控制排泥量,本文仅限于活性污泥法,生物膜及MBR工艺不适用。1、污泥浓度(MLSS)法用MLSS控制排泥是指在维持曝气池混合液污泥浓度恒定的情况下,确定排泥量。首先根据实际工艺状况确定一个合适的MLSS浓度值。常规
7月1日,福建省云霄县城区污水处理厂剩余污泥处置项目结果公告(包1)发布,项目中标供应商为漳州市绿川生物科技有限公司,中标金额为171.6万元。云霄县污水处理厂年产新污泥量约12000T(污泥含水率80%),服务期限1年,预算价为2256000.00元(单价预算价为188.00元/T),最高限价为210万元(单价最高限
文章亮点首次提出自剩余污泥中同步回收胞内与胞外高分子物质高效、无毒、可生物降解的CTAB为备选表面活性剂CTAB显著强化超声法提取高分子回收的高分子中Al、Na、Ca含量显著降低回收的高分子对重金属离子吸附性能可与商用吸附剂媲美文章简介污水资源化是未来污水处理的发展方向,也是人类可持续发展的必
5月9日,吉林省永吉县绿源污水处理有限公司剩余污泥安全无害化处置项目竞争性磋商公告发布,项目预算金额为污泥处置费330.00元/吨(含税、含运费),合同履行期限为3年。永吉县绿源污水处理有限公司剩余污泥安全无害化处置项目竞争性磋商公告项目编号:JLYX-CG2022001项目概况永吉县绿源污水处理有限公
编者按:污水中20%有机质来源于厕纸,主要成分乃纤维素物质。纤维素化学结构异常复杂、稳定,在污水好氧处理以及后续污泥厌氧消化过程中都很难降解,它们大多残留于消化污泥之中。纤维素与丝状细菌结构上有相似之处,在污水处理过程中可以充当“骨架”而现象可能出现与污泥膨胀类似的污泥絮体蓬松现象
4月18日,福建省云霄县城区污水处理厂剩余污泥处置项目公开招标公告发布,项目预算金额为225.6万元。云霄县污水处理厂年产新污泥量约12000T(污泥含水率80%),服务期限1年,预算价为2256000.00元(单价预算价为188.00元/T),最高限价为210万元(单价最高限价为175.00元/T),采购人为云霄县住房和城
编者按:碳中和背景下剩余污泥厌氧消化产甲烷似乎已被再度被唤起。然而,污泥厌氧消化有机物能源转化效率较低是限制其发扬光大的障碍,这是因为污泥细胞结构、木质纤维素以及腐殖质等成分存在其中。污泥细胞破壁、木质纤维素结构破稳藉预处理手段可以获得程度上的缓解,但腐殖质较木质纤维素结构更加稳
剩余污泥处理/处置目前在我国已成为比污水处理更为棘手的问题。有关污泥处理、处置,“扔(填埋)”和“烧(焚烧)”两种极端方式目前并存。但对于大城市而言,填埋“无地自容”已成为现实问题,这就使得其它处置方式被迫上马,如,堆肥、厌氧消化、干化焚烧等等。从资源/能源回收与投资/运行费用综合
活性污泥抑制试验,实际上大家都很少去跟踪很少去实际做,主要是因为这个实验做起来不好做,有时候实际和实验差别还是很大的,我们经过一个研究,进行如下分析供给污托邦各位同仁参考。
随着地球人口的增加,社会对农业用地的需求正日渐增高,而土壤污染正酝酿着一场严重的环境危机。一般情况下,土壤中的重金属以阳离子形式存在,通过静电作用或与配位作用形成化学键保留在土壤中。因此,最终的修复目标不仅是从土壤基质中分离出重金属离子,而且还得将其还原为零价金属态。然而,目前常
摘要:冶炼烟气制酸系统所产生的酸性废水治理是铜生产企业面临的技术难题。本文研究利用廉价的煤系硫铁矿粉替代硫化钠、硫酸亚铁处理含重金属离子酸性废水,可大幅度降低水处理成本,使处理后的水达到国家标准。关键词:煤系硫铁矿;重金属;酸水处理;研究1.概述随着铜产能的扩大,制酸烟气净化装置所
摘要:水体系重金属污染治理是目前全世界所面临的一个重大挑战。传统治理方法由于成本高、效率低等问题已不符合当今社会可持续发展战略。纳米纤维素凭借其来源丰富、可再生、化学反应活性高、比表面积大、密度低等优点,在水体系重金属离子去除领域有着光明的应用前景。然而,纳米纤维素吸附材料在水体
摘要:以电容去离子(CDI)在硬水软化、海水淡化、重金属盐净化以及废水处理中应用为分类,介绍了多种电极材料的制备方法与性能分析。认为高活性电极材料是获得其高性能的关键,应根据地域的不同,研究CDI技术与太阳能、风能、水能等技术耦合集成研究;根据不同水系,研究利于溶液中离子吸附的电极材料
一、提高土壤有机质土壤有机质是土壤固相部分的重要组成成分,尽管土壤有机质的含量只占土壤总量的很小一部分,但它对土壤肥力、土壤耕性影响很大。资料显示,在一定范围内,有机质的含量与土壤肥力水平呈正相关。土壤有机质的含量在不同土壤中差异较大,含量高的可达20%或30%以上,含量低的不足1%。而
近年来,随着工业发展,各种各样的重金属离子排入土壤和水源,随后被动植物吸收,又随着食物链进入人体,“镉大米”“毒蔬菜”等食品安全事件屡有发生。重金属在人体内能与蛋白质、酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。那么,如何避免这些重金属超标
目前,电镀废水、重金属废水处理的主要传统工艺一般有以下几种方法:化学加药沉降法、离子交换法、膜分离法和生化处理等。但这些传统的处理工艺很难达到提标后的排放要求,尤其是重金属和COD排放限值的要求,有的工艺即使可以实现重金属废水的达标排放,其投资成本和运行成本也给企业的生产经营造成很
本实用新型公开了一种用于重金属废水的回收处理系统,属于废水的回收处理系统领域,旨在提供一种用于重金属废水的回收处理系统,增加离子交换柱中废水排出的优点,其技术方案要点是挡水板上设有形状相同的第一导水孔和第二导水孔,挡水板在第一导水孔的位置设有废水出水管,挡水板在第二导水孔的位置设
近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员黄青课题组,利用表面增强拉曼光谱(SERS)技术,实现了对水体中汞离子的选择性、免标记、半定量的检测。该项成果对实现实际水样中重金属离子的高选择性及准确检测具有一定的科学意义和实用价值,相关成果在线发表在SensorsandActuator
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!