登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 检测点的选择
结合被调研城镇污水处理厂预处理单元工艺的特点和潜在的溶解氧变化区域,分别在跌水前相对静止区、跌水后紊流区,以及管道、渠道或构筑物的入口和出口设置检测点,连续测定上述检测点溶解氧的变化情况。
1.3 分析测试方法
本研究采用现场直接测试法,主要监测指标为DO值,采用HACH HQ30d单路输入多参数数字化分析仪(标准型电极LD10103)进行测试。
02 工程测试结果分析与讨论
2.1 预处理单元沿程DO变化
2014年秋季对3座城镇污水处理厂预处理单元检测点的DO值进行多次检测并取平均值,绘制主要检测点DO变化曲线,见图1,不同跌水点封闭状况、跌水高度和DO增量关系见表2。
2.2 跌水复氧的工程影响因素
(1)复氧量与跌水高度的关系。根据国内外跌水曝气的相关研究结论,传统跌水曝气工艺跌水导致的DO增量与跌水高度有关,跌水高度越高,DO增量越大。为此对表2中不同跌水点的跌水高度与DO增量之间的关系进行了统计分析,结果见图2所示。
根据图2,实际工程中跌水点的DO增量与跌水高度并无直接相关关系。虽然A厂两个跌水高度超过1 m的跌水点DO增量均达到3 mg/L以上,但B厂提升泵出口在跌水高度仅为0.4 m的情况下,DO增量同样达到3 mg/L以上,而同样是B厂,沉砂池0.5 m的跌水高度,DO增量不足0.5 mg/L。
(2)复氧量与跌水区域封闭状况。检测结果表明,跌水区域封闭状况是影响跌水复氧量的重要因素。从表2数据不难看出,相对而言,大部分敞开式或半敞开式结构的跌水区域,跌水后的DO增量明显大于封闭或半封闭结构。例如同样是提升泵出口,B厂为敞开式结构,经0.4 m跌水后,DO增量达到4.28 mg/L,而A厂为半封闭式结构,虽然跌水高度达到1.4 m,但跌水后DO增量仅为3.49 mg/L,低于B厂水平。
(3)跌水区紊流状况及其他。调研发现,跌水点的紊流状况、跌水过程中水流受到的冲击情况,以及其他一些工程因素都可能在一定程度上影响复氧量水平,相关效果有待进一步验证。
2.3 跌水对污水处理厂碳源损耗的影响
(1)预处理单元DO消耗情况。复氧后的污水在后续的输水管道、渠道和构筑物中,可能被来自于城市下水道、污泥脱水区或其他途径的微生物所利用,从而使DO值降低,一定程度上消耗进水中的可生物降解有机物。为此对3座污水处理厂潜在耗氧段的DO变化情况进行了统计,见表3。
表3数据表明,经跌水复氧后的污水,在流经后续密闭管道、渠道或进入单元构筑物时,会出现明显的DO浓度降低的情况。而根据污水处理的基本理论,在该区域内的DO降低意味着快速可生物降解有机物的消耗,模拟试验结果也验证了预处理单元各构筑物内微生物的存在。
表3中的数据以及模拟试验结果也表明,输水管道内DO消耗量与管道长度或污水在管道内的实际停留时间近似正相关,正常情况下,输水管道内每10 min停留时间可消耗0.5~1 mg/L的DO。
(2)复氧导致的预处理单元碳源总消耗量。污水预处理单元的复氧将导致两种类型的碳源损失:首先,预处理单元内的微生物以DO为电子受体,利用碳源完成生物合成;其次,预处理单元末端存留的DO进入后续生物系统的厌氧、缺氧工艺单元,同样消耗污水中的碳源。表4为案例污水处理厂预处理单元跌水复氧导致的碳源损失总量情况。
根据表4,被调查城镇污水处理厂预处理单元跌水复氧均造成不低于5 mg/L的优质碳源损失量,其中B厂的碳源损失量达到10 mg/L,对于脱氮除磷所需碳源不足,或出水TN长期处于超标边缘,需通过投加碳源确保稳定达标的污水处理厂而言,预处理单元碳源损失量相当可观。
03 跌水复氧的成因分析
根据前期研究结果,预处理单元反复的跌水复氧、耗氧过程必将消耗污水处理厂原水中的碳源,进一步加剧碳源不足问题,为此有必要对跌水复氧的原理和成因进行分析,以提出相应的控制措施。
3.1 跌水过程DO变化情况
为进一步研究跌水过程中DO值的变化规律,在图3所示的典型跌水区域设置了5个检测点,进行跌水前(1#)、跌落过程(2#~4#)和跌落后(5#)DO的变化规律测试,见图4所示。
根据图4曲线,不同检测点两个深度下的检测结果基本吻合,且1#~4#检测点均处于极低值,说明跌落过程中没有形成明显的表面复氧现象。而污水自4#检测点(图3b水花上方5~10 cm)跌落至5检测点(图3b水花位置)的瞬间,溶解氧自不足0.2 mg/L增加至2.7 mg/L,DO增量达到2.5 mg/L,结果表明跌水复氧作用主要发生于污水跌落至池体底部的瞬间。
3.2 跌水复氧形成机制分析
跌落过程复氧潜能分析。根据图3,污水经泵提升并从出口排出的瞬间,可认为具有一定的水平流速,而垂直流速可忽略不计。因此整个跌落过程可近似按自由落体理论计算。根据自由落体理论和计算公式,不同跌落时间下所完成的跌落高度见表5所示。
从表5数据不难看出,对于高度小于2 m的跌水区域,污水将在不超过1 s的时间内完成整个跌落过程,因此无论是采用哪种氧传递理论模型,在如此短的时间内通过表层复氧,都难以达到工程测试的DO增量,尤其是对于污水处理厂进水泵出口、沉砂池出口等过水断面相对较窄、水量相对较大的区域,气水接触面更小,通过界面理论复氧的可能性进一步降低。
3.3 跌水瞬间快速复氧理论
根据图4,跌水区域内DO的增加几乎发生于跌落瞬间,跌落过程中污水并没有明显的DO增量。结合跌水复氧工程影响因素分析结果,污水处理厂跌水复氧的条件主要包括:敞开式跌水区域和跌落点明显的紊流,而污水跌落的瞬间是充氧发生的主要时段。支持该推断的理论包括:
(1)跌水的过程中虽然无明显的复氧现象,但水柱周边的空气在摩擦力作用下沿水流方向运动,在这种旋流的作用下,水柱与围墙之间形成明显的空气旋流,如图5所示。
(2)在空气旋流作用下,区域内的空气快速交换,同时将污水厌氧过程中产生并在跌水过程中释放出的各种小分子有机物和气态物质排放到区域内,这也是预处理单元跌水区恶臭产生的主要原因。
(3)在池顶不封闭的情况下,所形成的空气旋流可加速渠道内气体与渠道周边空气的流通,使新鲜空气不断注入到跌水渠道内;池顶封闭或半封闭状态时,内外空气对流减小,区域内DO值逐渐降低。
(4)污水跌落至汇水渠的同时,也带动周边的富氧空气进入渠内,并与污水快速混合。
(5)水柱跌落至渠道内的瞬间,在冲击力作用下,界面的表面张力被破坏,氧传递阻力降低,加速气水混合。
(6)跌落瞬间,形成明显的波浪和水花,气水接触面增大,加速复氧过程。
04 基于跌水复氧的加盖控制技术研究
根据上述研究结论,跌水复氧主要发生于跌落至底部水渠的瞬间,跌水区域内空气旋流是复氧形成的主要原因,而跌水区域内空气与外界空气流通是复氧的前提。在实际工程中,跌水点的紊流状况和跌水区域内的空气旋流通常是难以控制的,因此本文提出通过跌水区域顶部加盖密封抑制空气交换的方式进行复氧控制,并选择太湖流域某污水处理厂进行了工程性研究。
4.1 加盖密封技术原理
加盖密封跌水复氧控制的技术原理如图5b所示,采用具有一定强度和密封性能的工程材料,在跌水区域顶部适当位置进行密闭处理,有效阻断跌水区域内空气与外界环境空气交换的渠道。在这种情况下,随着跌水过程中气水之间的物质交换,跌水区域空气中的氧浓度逐渐降低,最终达到稳定的低氧水平。
4.2 工程实施及效果
太湖流域某城镇污水处理厂进水泵出口原为半敞开式结构(见图6a),顶部铺设有钢制走道板结构,渠底液位到池顶的间距约为2.5 m。采取工程密封措施前,对跌水区域内空气和水的溶解氧进行了测试,其中空气溶解氧基本保持在8.0~9.0 mg/L波动,与外界空气溶解氧浓度等因素有关;水中溶解氧保持在3.5~4.5 mg/L,波动性相对较小。
采用在走道板顶部加装柔性材料的形式对该跌水区域顶部进行了密封处理,工程的整体密封性相对较好,施工过程照片见图6b。工程实施后对跌水区域内空气和水的溶解氧浓度进行连续监测,结果见图7所示。
根据图7,加盖封闭的前20多个小时内,跌水区域空气和水中的溶解氧浓度快速降低,表明跌水过程中空气中的溶解氧向水中逐渐转移,导致封闭空间内溶解氧浓度降低。至24 h后跌水区域空气中的溶解氧浓度降低到3~4 mg/L水平,水中溶解氧下降至1~1.5 mg/L,且基本保持平稳。多次破坏性试验出现基本相同的结论,且跌水区域的密封性进一步加强(出于安全考虑,预留了部分通气孔)后,空气中DO浓度可进一步降低至1~2 mg/L水平,此时水渠中的DO浓度可达到0.5 mg/L左右水平,有效抑制了跌水复氧。
05 结论与建议
(1)对3座典型一级A排放标准城镇污水处理厂进行了调研,结果表明预处理单元跌水区域普遍存在复氧现象,每次跌水后通常形成3 mg/L以上的DO增量;复氧作用主要发生于污水跌落瞬间,跌水过程中的复氧作用可忽略;复氧量与跌水区域的封闭情况、池型结构以及汇水渠的紊流状况直接相关,与跌水高度的关系不显著。
(2)预处理单元的管道、渠道或构筑物内微生物具有明显的耗氧能力,平均每10 min停留时间可消耗0.5~1 mg/L的DO,意味着同等量的碳源损失;预处理单元末端的DO进入后续生物系统,同样损耗碳源。被调查3座城镇污水处理厂预处理单元跌水复氧均造成5 mg/L以上的优质碳源损失,部分工程甚至达到或超过10 mg/L,进一步加剧了碳源不足问题。
(3)采用加盖密封的方式进行进水泵出口跌水复氧控制,结果表明加盖密封后,跌水区域空气的溶解氧由8.0~9.0 mg/L稳步下降至3~4 mg/L;水中溶解氧由3.5~4.5 mg/L稳步下降至1~1.5 mg/L。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
日前,湘潭市住建局与河东污水处理厂成功签订污水处理按效付费协议。该份协议的签订,标志着湘潭市成为湖南省第一个全部实行污水处理按效付费的城市。目前,市本级4座污水处理厂均已成功签订按效付费协议并实施,经测算,比按量付费每年可节省约1300万元。湘潭市深入贯彻习近平生态文明思想,落实《中
近日,由中国五冶集团承建的泸州市城东污水处理二期工程项目正式竣工验收,标志着该项目全面建成并投入运营。该项目位于泸州市龙马潭区罗汉街道,是泸州市第一座全地埋式污水处理厂,设计日处理能力达10万立方米(土建一次建成,设备分阶段安装),竣工后实现5万吨日处理能力,经处理后的出水水质稳定
12月20日,云南金平县城镇污水处理厂及配套管网建设工程设计施工总承包及运营(EPC+O)招标公告发布。项目主要建设4座污水处理厂以及配套管网建设,包括金平县污水处理厂扩建;金水河镇污水处理工程;勐拉镇污水处理工程;老勐镇污水处理工程;配套污水管网67.9千米。标段合同估算价:11886.5万元。
11月29日,温州杭钢水务委托紫光环保与温州市住房和城乡建设局签署了关于温州市中心片污水处理厂补充协议,标志着温州市中心片污水处理厂再生水利用工程项目正式迈入下一阶段。温州市中心片污水处理厂再生水利用工程设计规模为20万吨/日,主要用于河道生态补水和城市杂用水;采用半地埋全封闭建设形式
11月28日,广元市昭化区城镇污水处理及配套设施设备更新改造项目设计施工总承包招标,投资估算总价为11490.98万元,建设规模:对泉坝、昭化等43座污水处理厂(站)(处理规模共计15310m3/d)进行设备更新改造,对原工艺进行改造升级,更新改造格栅机、风机、提升泵、叠螺脱水机、生物除臭系统、电气自
11月26日,肖家河污水处理厂四期扩建工程施工招标,合同估算金额24700万元,建设规模:肖家河污水处理厂四期扩建工程,新增污水处理能力6万吨/日,污水处理能力达到13.2万吨/日。污水处理采用改良型A2/O+V型砂滤池工艺,出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A类标准。肖
近日,江西抚州临川区城镇污水处理厂及配套管网二期建设项目EPC总承包招标公告发布。临川区城镇污水处理厂及配套管网二期建设项目主要建设内容为:针对江西抚州临川区城镇污水处理厂及配套管网二期建设项目EPC总承包招标临川区高坪镇、温泉镇、东馆镇、腾桥镇、荣山镇、秋溪镇、龙溪镇共7个城镇生活污
近日,辽宁发布《寒冷地区污水厂提标改造技术指南(征求意见稿)草案》。本文件规定了寒冷地区辽河流域县级及县级以上城镇污水处理厂。详情如下:关于征求《寒冷地区污水厂提标改造技术指南》地方标准草案意见的通知各有关单位及个人:《寒冷地区污水厂提标改造技术指南》地方标准草案已完成,现公开征
11月5日,浙江永康市城镇污水处理厂扩建及污水收集处理工程——龙山镇污水处理厂三期扩建工程招标,招标估算金额118164000.00元,招标规模:项目新增用地9.83亩,建设粗格栅及提升泵房、细格栅及沉砂池、多级A/O生化池、二沉池、磁混凝沉淀池、反硝化深床滤池、接触消毒池及巴氏计量槽、生产车间、综合
9月27日,山东省生态环境厅、山东省住房和城乡建设厅联合发布关于进一步明确城镇污水处理厂接纳工业废水比例核算有关事项的通知。详情如下:山东省生态环境厅山东省住房和城乡建设厅关于进一步明确城镇污水处理厂接纳工业废水比例核算有关事项的通知鲁环字〔2024〕158号各市生态环境局、住房城乡建设局
近日,住房城乡建设部办公厅关于行业标准《城镇污水处理厂污泥处置水泥熟料生产用泥质(修订征求意见稿)》公开征求意见,本文件规定了城镇污水处理厂污泥经脱水、稳定、干化或焚烧等处理后,利用新型干法水泥生产工艺生产水泥熟料的泥质指标及限值、取样和检测方法等。适用于城镇污水处理厂污泥的处置
12月25日,新疆环保循环产业集团有限责任公司(以下简称新疆环保集团)与伊犁哈萨克自治州生态环境局(以下简称伊犁州生态环境局)在伊犁哈萨克自治州伊宁市举行战略合作框架协议签约仪式,正式建立战略合作伙伴关系。新疆能源集团党委委员、副总经理,新疆环保集团党委书记、董事长艾斯哈尔·茹孜,伊
12月25日,柳州市柳南区竹鹅溪河源岸治理与特色产业融合发展EOD项目实施主体采购(重)中标候选人公示。第一中标候选人:广西柳州元信产业投资有限公司、桂林建筑规划设计集团有限公司、中铁十六局集团有限公司;第二中标候选人:铁城建集团有限公司、广西大汉岩土工程有限责任公司、南宁市建筑规划设
近日,上海市政总院连续承接江都区玉带河西排干东排干周边排水管网改造工程、江都城区中部片区污水处理提质增效达标区建设工程两个设计项目。项目承接为总院城市水环境治理再添新业绩,助力水韵扬州、美丽江都建设。江都中部片区地处江都老城区,总面积约5.6平方公里,区域内河道总长约4.5公里。城区内
12月17日,洪城环境全资子公司洪城环保与江西洪城环境建设工程有限公司、南昌市城市规划设计研究总院集团有限公司、江西省勘察设计研究院有限公司组成联合体,中标乐平市主城区水环境综合治理厂网一体化一期工程特许经营权出让项目,中标投资总金额为3.595503亿元。本项目为特许经营(BOT)模式,特许
112月16日,丹江口库区十堰市竹山县堵河流域水环境综合治理工程(二期)评标结果公示。本标段采用“评定分离”方式进行招标,评标委员会推荐的中标候选人排名不分先后:中标候选人:湖北兴竹建设工程有限公司、江苏华里设计有限公司,投标报价:138137450元;中标候选人:浙江萧建集团有限公司、智诚建
12月13日,江苏淮安区水环境综合提升工程(PC+O)中标候选人公示。定标候选人明细(排名不分先后):1、中建生态环境集团有限公司,投标报价:121118256.76元;2、北京首创生态环保集团股份有限公司,投标报价:124867817.02元;3、北京恩菲环保股份有限公司,投标报价:131908301元;4、安徽环境科技
12月12日,南宫市城市管理综合行政执法局南宫市水环境综合治理工程设计-施工总承包公开招标公告发布。详情如下:南宫市城市管理综合行政执法局南宫市水环境综合治理工程设计-施工总承包公开招标公告(远程异地+双盲分散评审)1.招标条件本招标项目南宫市城市管理综合行政执法局南宫市水环境综合治理工
12月10日,中国能建葛洲坝生态环保公司党委书记、董事长杨贞武与农业农村部规划设计研究院总工程师、研究员齐飞会谈,双方围绕高标准农田建设及设施农业等领域合作深入交流。齐飞对杨贞武一行到访表示欢迎,并介绍了规划设计研究院科技创新及涉农项目等情况。他表示,未来五年,内蒙古、黑龙江等地区将
12月12日,邯郸经开区滏阳河流域水环境综合治理与一二三产融合发展EOD项目-社会投资人招标公告。邯郸经开区滏阳河流域水环境综合治理与一二三产融合发展EOD项目,包含三个子项目,(1)滏阳河流域经开区内生态河生态修复及整体提升项目;(2)经开区生态工业体系建设(一期)项目;(3)沿河生态康养及
12月10日,四川沱江流域釜溪河内江市威远县段水环境综合治理项目设计施工总承包标段-评标结果公示,该项目流标。该项目建设生态护岸44.26公里、生态步道8.06公里、生态沟渠32公里、生态隔离带3平方公里、河道垃圾清理3万吨、新建污水管总长2381米,清淤修复整治管道总长7629米,涉及污水管道合计10公里
12月6日,湖北丹江口库区神定河流域张湾段水环境综合治理项目工程总承包(EPC)评标结果公示。本标段采用“评定分离”方式进行招标,评标委员会推荐的中标候选人排名不分先后:中标候选人:湖北迅建建筑工程有限公司、随州市建筑设计院有限公司,投标报价:212311647元;中标候选人:湖北泽耀建设工程有限
近日,山东市生态环境局积极推动青岛啤酒(日照)有限公司和世涛(山东)科技产品有限公司2家啤酒企业与日照城投环境科技集团有限公司合作,签订减污降碳协同增效战略合作协议。污水处理厂在运行过程中,需要外购碳源促进微生物代谢和降解污水中的有机物质。上游企业进入下游污水处理厂的生产废水需要
碳源投加的计算公式的介绍有很多,但是有些小伙伴反映利用公式算出来的值是负数。其实碳源的计算万变不离其宗,只是很多文章照搬前人留下的公式,没有自己的思路或者讲解,让很多人看不懂,碳源投加核心其实就是思路的正确!1、碳源投加计算为什么是负数?1、计算公式选择错误计算碳源的投加量,选对计
近年来,污水处理排放标准越来越高,尤其是TN已经脱离了劣五类水标准的低级趣味,比肩三四类水的标准了,因市政污水低碳高氮的水质特点,在采用常规脱氮工艺时无法满足缺氧反硝化阶段对碳源的需求,导致TN超标,所以投加碳源是污水处理厂解决这类问题重要且唯一的手段。为什么乙酸钠是最好的碳源?对于
近年来,宿迁市宿豫区坚持生态优先、绿色发展,探索实施生态产品交易,积极促成了啤酒废水替代碳源交易,为减污降碳协同增效提供了新思路。张家港宿豫工业园区污水处理厂是宿豫区重要的工业和生活污水处理厂之一,其每日水样检测结果显示,进水碳氮比(C/N)比值较低,进水中碳源不足,为确保出水稳定
【社区案例】在计算的时候计算格式中乙酸钠cod当量0.78,但是在实际运行过程中我们投加的乙酸钠cod当量是20万。这两个在运用到实际过程的时候该怎么理解,该怎么计算药剂投加量。同一种碳源COD当量数值差距很大,原因就是单位的不同,碳源厂家给的单位一般都是mg/Kg或者mg/L,换算一下,纯的乙酸钠COD
9月11日,浙江省生态环境厅就《浙江省减污降碳协同处理管理指南——废水碳源综合利用(征求意见稿)》公开征求意见,本指南规定了废水碳源综合利用减污降碳协同处理管理指南的基本原则、工作要求、技术内容要求、管理内容要求和发布实施行业。本指南适用于指导和规范废水作为碳源综合利用减污降碳协同
9月19日,全国公共资源交易平台发布了云南保山产业园区综合污水处理厂扩建项目勘察、设计、施工总承包中标结果公告,中标人为中铁七局集团武汉工程有限公司、云南南方地勘工程有限公司、中机中联工程有限公司联合体。项目规模:在综合污水处理厂原有处理规模1.5万吨/天的基础上再扩建1.5万吨/天,达到
为贯彻落实《减污降碳协同增效实施方案》,助力减污降碳协同创新区建设,进一步指导和规范废水处理领域减污降碳协同处理,浙江省生态环境厅组织省环科院编制了《浙江省减污降碳协同处理管理指南——废水碳源综合利用(征求意见稿)》,现向社会公开征求意见。关于公开征求《浙江省减污降碳协同处理管理
【社区案例】简单AO工艺,一直在A前段投加甲醇作为碳源,进水4方,进水总氮在300左右,出水总氮现在100,之前最低时候可以出水总氮可以达二十三十。硝化池氨氮去除数据正常。内回流25方,外回流现在是暂时到O池也是25方。有什么方法可以降下总氮。对于AO脱氮系统,TN的去除率低,主要与碳源投加和回流
【社区案例】想问一下大家怎么判定生化好氧池需要投加碳源了?投加的量和浓度又是多少,希望大家不吝赐教。碳源投加的判定是根据按碳氮比来确定是否投加碳源,投加多少碳源。而且碳源投加的位置一定是哪边需要投加到哪边,例如脱氮工艺中碳源需要投加到缺氧池而不是好氧池,这个一定不能搞错了,搞错了
汕尾海丰珠江啤酒分装有限公司近日与海丰县云水环保有限公司(海丰县第二污水处理厂运营公司)签订废水纳管排放协议,啤酒厂预处理后的生产废水可经市政污水管网排入海丰县第二污水处理厂处理,有效节约污水处理费用,污水处理厂则减少“碳源”购买费用,实现工业废水资源化利用。资源互补,实现企业低
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!