登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 检测点的选择
结合被调研城镇污水处理厂预处理单元工艺的特点和潜在的溶解氧变化区域,分别在跌水前相对静止区、跌水后紊流区,以及管道、渠道或构筑物的入口和出口设置检测点,连续测定上述检测点溶解氧的变化情况。
1.3 分析测试方法
本研究采用现场直接测试法,主要监测指标为DO值,采用HACH HQ30d单路输入多参数数字化分析仪(标准型电极LD10103)进行测试。
02 工程测试结果分析与讨论
2.1 预处理单元沿程DO变化
2014年秋季对3座城镇污水处理厂预处理单元检测点的DO值进行多次检测并取平均值,绘制主要检测点DO变化曲线,见图1,不同跌水点封闭状况、跌水高度和DO增量关系见表2。
2.2 跌水复氧的工程影响因素
(1)复氧量与跌水高度的关系。根据国内外跌水曝气的相关研究结论,传统跌水曝气工艺跌水导致的DO增量与跌水高度有关,跌水高度越高,DO增量越大。为此对表2中不同跌水点的跌水高度与DO增量之间的关系进行了统计分析,结果见图2所示。
根据图2,实际工程中跌水点的DO增量与跌水高度并无直接相关关系。虽然A厂两个跌水高度超过1 m的跌水点DO增量均达到3 mg/L以上,但B厂提升泵出口在跌水高度仅为0.4 m的情况下,DO增量同样达到3 mg/L以上,而同样是B厂,沉砂池0.5 m的跌水高度,DO增量不足0.5 mg/L。
(2)复氧量与跌水区域封闭状况。检测结果表明,跌水区域封闭状况是影响跌水复氧量的重要因素。从表2数据不难看出,相对而言,大部分敞开式或半敞开式结构的跌水区域,跌水后的DO增量明显大于封闭或半封闭结构。例如同样是提升泵出口,B厂为敞开式结构,经0.4 m跌水后,DO增量达到4.28 mg/L,而A厂为半封闭式结构,虽然跌水高度达到1.4 m,但跌水后DO增量仅为3.49 mg/L,低于B厂水平。
(3)跌水区紊流状况及其他。调研发现,跌水点的紊流状况、跌水过程中水流受到的冲击情况,以及其他一些工程因素都可能在一定程度上影响复氧量水平,相关效果有待进一步验证。
2.3 跌水对污水处理厂碳源损耗的影响
(1)预处理单元DO消耗情况。复氧后的污水在后续的输水管道、渠道和构筑物中,可能被来自于城市下水道、污泥脱水区或其他途径的微生物所利用,从而使DO值降低,一定程度上消耗进水中的可生物降解有机物。为此对3座污水处理厂潜在耗氧段的DO变化情况进行了统计,见表3。
表3数据表明,经跌水复氧后的污水,在流经后续密闭管道、渠道或进入单元构筑物时,会出现明显的DO浓度降低的情况。而根据污水处理的基本理论,在该区域内的DO降低意味着快速可生物降解有机物的消耗,模拟试验结果也验证了预处理单元各构筑物内微生物的存在。
表3中的数据以及模拟试验结果也表明,输水管道内DO消耗量与管道长度或污水在管道内的实际停留时间近似正相关,正常情况下,输水管道内每10 min停留时间可消耗0.5~1 mg/L的DO。
(2)复氧导致的预处理单元碳源总消耗量。污水预处理单元的复氧将导致两种类型的碳源损失:首先,预处理单元内的微生物以DO为电子受体,利用碳源完成生物合成;其次,预处理单元末端存留的DO进入后续生物系统的厌氧、缺氧工艺单元,同样消耗污水中的碳源。表4为案例污水处理厂预处理单元跌水复氧导致的碳源损失总量情况。
根据表4,被调查城镇污水处理厂预处理单元跌水复氧均造成不低于5 mg/L的优质碳源损失量,其中B厂的碳源损失量达到10 mg/L,对于脱氮除磷所需碳源不足,或出水TN长期处于超标边缘,需通过投加碳源确保稳定达标的污水处理厂而言,预处理单元碳源损失量相当可观。
03 跌水复氧的成因分析
根据前期研究结果,预处理单元反复的跌水复氧、耗氧过程必将消耗污水处理厂原水中的碳源,进一步加剧碳源不足问题,为此有必要对跌水复氧的原理和成因进行分析,以提出相应的控制措施。
3.1 跌水过程DO变化情况
为进一步研究跌水过程中DO值的变化规律,在图3所示的典型跌水区域设置了5个检测点,进行跌水前(1#)、跌落过程(2#~4#)和跌落后(5#)DO的变化规律测试,见图4所示。
根据图4曲线,不同检测点两个深度下的检测结果基本吻合,且1#~4#检测点均处于极低值,说明跌落过程中没有形成明显的表面复氧现象。而污水自4#检测点(图3b水花上方5~10 cm)跌落至5检测点(图3b水花位置)的瞬间,溶解氧自不足0.2 mg/L增加至2.7 mg/L,DO增量达到2.5 mg/L,结果表明跌水复氧作用主要发生于污水跌落至池体底部的瞬间。
3.2 跌水复氧形成机制分析
跌落过程复氧潜能分析。根据图3,污水经泵提升并从出口排出的瞬间,可认为具有一定的水平流速,而垂直流速可忽略不计。因此整个跌落过程可近似按自由落体理论计算。根据自由落体理论和计算公式,不同跌落时间下所完成的跌落高度见表5所示。
从表5数据不难看出,对于高度小于2 m的跌水区域,污水将在不超过1 s的时间内完成整个跌落过程,因此无论是采用哪种氧传递理论模型,在如此短的时间内通过表层复氧,都难以达到工程测试的DO增量,尤其是对于污水处理厂进水泵出口、沉砂池出口等过水断面相对较窄、水量相对较大的区域,气水接触面更小,通过界面理论复氧的可能性进一步降低。
3.3 跌水瞬间快速复氧理论
根据图4,跌水区域内DO的增加几乎发生于跌落瞬间,跌落过程中污水并没有明显的DO增量。结合跌水复氧工程影响因素分析结果,污水处理厂跌水复氧的条件主要包括:敞开式跌水区域和跌落点明显的紊流,而污水跌落的瞬间是充氧发生的主要时段。支持该推断的理论包括:
(1)跌水的过程中虽然无明显的复氧现象,但水柱周边的空气在摩擦力作用下沿水流方向运动,在这种旋流的作用下,水柱与围墙之间形成明显的空气旋流,如图5所示。
(2)在空气旋流作用下,区域内的空气快速交换,同时将污水厌氧过程中产生并在跌水过程中释放出的各种小分子有机物和气态物质排放到区域内,这也是预处理单元跌水区恶臭产生的主要原因。
(3)在池顶不封闭的情况下,所形成的空气旋流可加速渠道内气体与渠道周边空气的流通,使新鲜空气不断注入到跌水渠道内;池顶封闭或半封闭状态时,内外空气对流减小,区域内DO值逐渐降低。
(4)污水跌落至汇水渠的同时,也带动周边的富氧空气进入渠内,并与污水快速混合。
(5)水柱跌落至渠道内的瞬间,在冲击力作用下,界面的表面张力被破坏,氧传递阻力降低,加速气水混合。
(6)跌落瞬间,形成明显的波浪和水花,气水接触面增大,加速复氧过程。
04 基于跌水复氧的加盖控制技术研究
根据上述研究结论,跌水复氧主要发生于跌落至底部水渠的瞬间,跌水区域内空气旋流是复氧形成的主要原因,而跌水区域内空气与外界空气流通是复氧的前提。在实际工程中,跌水点的紊流状况和跌水区域内的空气旋流通常是难以控制的,因此本文提出通过跌水区域顶部加盖密封抑制空气交换的方式进行复氧控制,并选择太湖流域某污水处理厂进行了工程性研究。
4.1 加盖密封技术原理
加盖密封跌水复氧控制的技术原理如图5b所示,采用具有一定强度和密封性能的工程材料,在跌水区域顶部适当位置进行密闭处理,有效阻断跌水区域内空气与外界环境空气交换的渠道。在这种情况下,随着跌水过程中气水之间的物质交换,跌水区域空气中的氧浓度逐渐降低,最终达到稳定的低氧水平。
4.2 工程实施及效果
太湖流域某城镇污水处理厂进水泵出口原为半敞开式结构(见图6a),顶部铺设有钢制走道板结构,渠底液位到池顶的间距约为2.5 m。采取工程密封措施前,对跌水区域内空气和水的溶解氧进行了测试,其中空气溶解氧基本保持在8.0~9.0 mg/L波动,与外界空气溶解氧浓度等因素有关;水中溶解氧保持在3.5~4.5 mg/L,波动性相对较小。
采用在走道板顶部加装柔性材料的形式对该跌水区域顶部进行了密封处理,工程的整体密封性相对较好,施工过程照片见图6b。工程实施后对跌水区域内空气和水的溶解氧浓度进行连续监测,结果见图7所示。
根据图7,加盖封闭的前20多个小时内,跌水区域空气和水中的溶解氧浓度快速降低,表明跌水过程中空气中的溶解氧向水中逐渐转移,导致封闭空间内溶解氧浓度降低。至24 h后跌水区域空气中的溶解氧浓度降低到3~4 mg/L水平,水中溶解氧下降至1~1.5 mg/L,且基本保持平稳。多次破坏性试验出现基本相同的结论,且跌水区域的密封性进一步加强(出于安全考虑,预留了部分通气孔)后,空气中DO浓度可进一步降低至1~2 mg/L水平,此时水渠中的DO浓度可达到0.5 mg/L左右水平,有效抑制了跌水复氧。
05 结论与建议
(1)对3座典型一级A排放标准城镇污水处理厂进行了调研,结果表明预处理单元跌水区域普遍存在复氧现象,每次跌水后通常形成3 mg/L以上的DO增量;复氧作用主要发生于污水跌落瞬间,跌水过程中的复氧作用可忽略;复氧量与跌水区域的封闭情况、池型结构以及汇水渠的紊流状况直接相关,与跌水高度的关系不显著。
(2)预处理单元的管道、渠道或构筑物内微生物具有明显的耗氧能力,平均每10 min停留时间可消耗0.5~1 mg/L的DO,意味着同等量的碳源损失;预处理单元末端的DO进入后续生物系统,同样损耗碳源。被调查3座城镇污水处理厂预处理单元跌水复氧均造成5 mg/L以上的优质碳源损失,部分工程甚至达到或超过10 mg/L,进一步加剧了碳源不足问题。
(3)采用加盖密封的方式进行进水泵出口跌水复氧控制,结果表明加盖密封后,跌水区域空气的溶解氧由8.0~9.0 mg/L稳步下降至3~4 mg/L;水中溶解氧由3.5~4.5 mg/L稳步下降至1~1.5 mg/L。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月16日,四川彭山经济开发区污水处理厂扩容提升项目环境影响报告书(征求意见稿)公示发布。本次改扩建对现有一期工程的污水处理工艺进行改造,维护修缮原有设施设备,提高处理效果,使出水稳定达到Ⅲ类水标准,同时改造期间原有系统正常运行,本次计划改造设施设备如下:①对粗格栅及进水泵房、细格
环境信息公开是保障公民环境知情权的重要手段,是促进社会公众参与和监督生态环境保护工作的基本前提。为落实《中华人民共和国固体废物污染环境防治法》信息公开要求,生态环境部于2024年1月印发《固体废物污染环境防治信息发布指南》。2024年,各地陆续依法发布了2023年度固体废物污染环境防治信息。
6月12日,福建白金工业园区污水处理厂二期扩建及提标改造工程(EPC+F)招标公告发布。闽清白金工业园区污水处理厂二期扩建及提标改造工程项目:①扩建工程:扩建规模为0.5万m3/d,扩建后总规模为1.0万m3/d,现状粗格栅及进水泵房改造、现状事故池改造、现状紫外消毒池改造、现状卡鲁塞尔氧化沟西侧新建
1990-2025SCIMEE35年前他诞生了10年前他登陆资本市场(股票代码:300425)6年前他加入中建集团成为旗下唯一的上市环保公司他用35年的深耕与10年的资本化蜕变从“国内首台”做到“行业第一”技术立身:要做就做最好惟精惟一的信念贯穿始终自1991年以来,中建环能以技术立身,打破日本2秒分离机国际垄断
北极星水处理网获悉,6月11日,太湖县污水处理设施运维特许经营(TOT)项目中标结果正式公示。武汉天源集团股份有限公司(原武汉天源环保股份有限公司)以8400万元中标该项目,特许经营权为30年。公告显示,该项目特许经营权转让底价为7000万元。据悉,该项目包括太湖县老城污水处理厂和城东污水处理厂
6月10日,四川蓬安县政府发布四川蓬安工业园区投资开发管理有限责任公司蓬安工业园区污水处理厂建设工程(一期)环境影响评价公众参与第二次征求意见公示。项目名称:蓬安工业园区污水处理厂建设工程(一期)建设单位:四川蓬安工业园区投资开发管理有限责任公53F8建设地点:蓬安县河舒镇河西社区建设
日前,河南省生态环境厅印发《河南省工业园区工业废水依托城镇污水处理厂处理评估工作指南(试行)》。详情如下:关于印发《河南省工业园区工业废水依托城镇污水处理厂处理评估工作指南(试行)》的通知各省辖市生态环境局、发展改革委、住房城乡建设局、城市管理局,济源示范区生态环境局、发展改革和
5月30日,倍杰特集团股份有限公司发布《关于喀什市城北供水保障能力提升工程及污水处理厂建设项目签订BOT特许经营协议暨重大合同进展的公告》。公告显示,倍杰特已与喀什市水利局签订《喀什地区喀什市城北供水保障能力提升工程及污水处理厂建设项目BOT特许经营协议》。据悉,2025年4月19日,倍杰特集团
5月30日,四川天全县始阳镇污水处理厂扩建工程(项目名称)设计施工总承包/标段招标公告招标公告发布。羡慕在原有污水处理厂基础上进行改扩建,扩建规模为0.5万m/d,建成后项目总处理污水规模达到1万m/d。项目厂内工程主要包括:分配井、细格栅及旋流沉砂池、AA0池、二沉池、纤维转盘滤池、紫外线消毒渠
5月29日,广西百色住房和城乡建设局发布《百色工业园区工业污水处理厂改扩建项目EPC总承包中标候选人公示》,桂润环境科技股份有限公司预中标。第一候选人:桂润环境科技股份有限公司,投标报价27011479.79元;第二候选人:广西亨泰建设工程有限公司/中创科卓工程设计有限公司,投标报价27810016.35元
日前,鹰潭高新区城镇污水处理改造扩容一期工程工业污水处理特许经营权运营服务采购结果公示。北京首创生态环保集团股份有限公司中标,运营服务费单价为1.96元/吨。该项目特许经营期截止至2045年,自合同签订之日起算20年。据招标文件显示,该项目为鹰潭高新区城镇污水处理改造扩容一期工程项目,设计
2025年10月30日-11月1日国家会展中心(上海)崧泽大道333号展会规模:25000平方米主办单位:联合国人居署上海市住房与城乡建设管理委员会执行单位:东浩兰生会展集团上海现代国际展览有限公司东浩兰生会展集团上海建智展览有限公司一、总体情况上海国际城市与建筑博览会(以下简称城博会)作为“世界城市日
基本信息中文名称:2025深圳国际水务科技博览会(IWTE2025)英文名称:ShenzhenInternationalWaterTechnologyExpo2025展会时间:2025年11月24-26日展会地点:深圳会展中心(福田)展会规模:展览面积50000平米,展商1000余家,展位2000个,专业观众35000人次组织机构组织单位《给水排水》杂志社亚太建设科
近日,江阴市东横河截流系统改造—健康桥东侧段污水管道修复工程顺利收官。此次施工创下全国首例“深埋+大管径+长距离”高弹紫外光固化修复纪录,管道埋深达15米、管径DN1000、单段修复长度209米,以硬核技术刷新行业标杆!一修复工程的必要性江阴东横河截流系统建于2007年,肩负城区生活污水截流重任
1990-2025SCIMEE35年前他诞生了10年前他登陆资本市场(股票代码:300425)6年前他加入中建集团成为旗下唯一的上市环保公司他用35年的深耕与10年的资本化蜕变从“国内首台”做到“行业第一”技术立身:要做就做最好惟精惟一的信念贯穿始终自1991年以来,中建环能以技术立身,打破日本2秒分离机国际垄断
注:板块及分会场持续更新中,请以正式通知为准。组织机构01主办单位青岛市人民政府02支持单位世界水理事会(WWC)国际水协会(IWA)中国工业节能与清洁生产协会河海大学膜材料与膜应用国家重点实验室03承办单位青岛市科学技术协会青岛市商务局青岛西海岸新区管理委员会水资源高效利用与工程安全国家工程研
2025年5月27日,全国首款智慧生态净化岛在湖北十堰丹江口市官山河水域开启试航。这标志着我国流域生态保护迈入“智慧化”治理新阶段,为水域提供“感知-决策-治理”一体化长效解决方案。该智慧生态净化岛由湖北汽车工业学院参与联合研发,校企共建“智慧生态装备研发中心”,聚焦核心技术攻关。当前设
5月23日,ST岭南发布公告,近日公司收到乌鲁木齐市中级人民法院的《民事起诉状》,因建设工程施工合同纠纷被新疆城建(集团)股份有限公司起诉。公司作为被告,涉及的诉讼金额为1亿元,该案件目前处于一审阶段,尚未开庭审理。原告请求判令三被告共同支付工程款8225万元,并支付逾期付款利息1778万元,
日前,泰达城发集团所属天津泰达生态科技有限公司成功竞得津滨开(挂)G2025-6号宗地。该地块将用于建设再生水厂,标志着天津经开区在推动水资源循环利用、践行绿色发展理念方面迈出重要一步。该项目位于经开区西区,总建筑面积19045.06平方米,建成后,将有效弥补区域水资源循环利用短板,显著降低企
5月20日,山西省阳泉市常务副市长耿鹏鹏率队莅临光大环境深圳总部,与光大环境董事会主席王思联举行工作会谈,围绕固废综合利用、水环境治理、新能源开发等领域展开务实交流,共商央地协同发展新路径。王思联对耿鹏鹏一行的到来表示欢迎,并介绍了光大环境的发展情况。他表示,光大环境作为中国环保行
5月21日,生态环境部等七部门印发《美丽河湖保护与建设行动方案(2025—2027年)》,方案提出,到2027年,美丽河湖建成率达到40%左右;到2030年,美丽河湖建设取得明显成效;到2035年,美丽河湖基本建成。中央财政积极支持美丽河湖保护与建设。引导和鼓励地方财政及社会资本加大投入,不断强化资金保障
北极星售电网获悉,近日,内蒙古科左后旗发展和改革委员会发布关于科左后旗2024年国民经济和社会发展计划执行情况与2025年国民经济和社会发展计划草案的报告,其中提到,2024年,绿电直供+增量配电网+下游产业的“N+1+N”产业结构初步形成。在现有的新能源99.21万千瓦装机规模基础上,重点推动3个新能
近日,孝义市餐厨垃圾制备新型生物质碳源项目迎来重大进展,顺利完成设备安装并成功进行清水试车,为后续带料调试和投入运营奠定了坚实基础。该技术是启迪环境科技发展股份有限公司联合同济大学、北京科技大学共同承担的国家重点研发计划。项目的实施重在开发餐厨垃圾制备新型生物质碳源技术的工程化应
6月17日,贵州乌当区400吨厨余垃圾处置设施提标改造建设项目环境影响评价报批前公示。该项目总投资5200万元,在现有450t/d餐厨垃圾(含50t/d地沟油)处理规模基础上,新增200t/d厨余垃圾处理能力,改扩建后全厂总处理规模达650t/d(含餐厨垃圾处理能力200t/d,地沟油50t/d及厨余垃圾处理能力400t/d);
截至2025年4月,全球运行的CO捕集和封存能力略高于5000万吨,较一年前有所提升。与此同时,到2030年,封存能力可能达到6.7亿吨CO,与此前数据库更新相比增加了10%。CCUS项目数据库对2030年前项目管道数据的梳理显示,行业更注重推进现有项目,而非规划新项目。若当前在建项目全部完成,现有产能将几乎
6月11日下午,隆基氢能成功举办“破壁·共生:中国氢醇产业生态贡献全球能源新秩序”为主题的圆桌对话活动,特邀行业领袖、政策专家及先锋企业共话氢醇产业破局点。IMO新规、3000方电解槽稳定运行、万亿级绿色甲醇需求爆发……这些关键词背后,中国正为全球能源秩序注入确定性。活动在隆基绿能副总裁、
近年来,在国际绿色转型趋势与国内“双碳”目标的驱动下,氢氨醇一体化项目在国内外密集落地。以国内绿氨项目为例,据中国氢能联盟研究院统计,截至2024年底,我国在建的绿氨项目产能约190万吨/年,规划产能约1780万吨/年。氢氨醇一体化是指将风光发电、电解水制氢、绿氨及绿色甲醇合成等多个环节紧密
继万润新能、龙蟠科技、富临精工等行业巨头后,高压密磷酸铁锂迎来了一位重量级玩家——华友集团。近日,华友集团全资子公司浙江友山新材料科技有限公司公开了一项《一种高压实密度磷酸铁锂材料的制备方法》的专利。专利摘要显示,本发明公开了一种高压实密度磷酸铁锂材料的制备方法,通过大、小颗粒磷
近日,上海市政总院承担武汉左岭污水处理厂二厂及配套设施新建工程设计工作,项目规划总规模20万吨/日,总占地面积16.06公顷,一期工程6.5万吨/日,占地面积8.44公顷。项目建成后将显著缓解武汉新城左岭片区工业污水处理压力,为长江生态保护提供关键支撑。创新工艺突破技术瓶颈针对武汉新城左岭片区电
5月8日,青岛啤酒(成都)有限公司与成都市温江城投顺源生态环境建设有限公司在成都市温江区人民政府会议室正式签署废水价值共享项目合作协议,温江生态环境局、温江区水务局相关负责人出席并见证签约仪式。政策创新啤酒企业生产废水具有高浓度有机物、无毒害、可生化性极好的特点,其含碳量可成为污水
4月27日,吉林油田举办新闻发布会,吉林石化—吉林油田二氧化碳管道工程(一期)27日在吉林省松原市启动。该管道设计总长约400公里,建成后预计每年可在地下封存二氧化碳量超过400万吨。据介绍,该管道是目前中国运输距离最长、管径最粗、压力最高、规模最大的二氧化碳管道,采用超临界/密相(一种特殊的
大力发展二氧化碳捕集、利用与封存(CCUS/CCS)产业,是未来我国实现“双碳”目标、保障能源安全的战略选择和必然路径。近年来,中国石油积极践行绿色低碳发展战略,以国务院国资委“百大工程”中国石油CCUS重大示范工程项目为依托,持续加强CCUS领域应用基础研究,大力推进关键技术攻关和工业化应用,
绿色工厂拔地而起,新能源汽车等产业加速布局……作为海南自贸港的重要窗口,海口国家高新区大力培育以绿色为底色的新质生产力,降碳、减污、扩绿与经济增长协同推进,展现出绿色发展新气象。绿色园区建设引领发展2023年12月,海口国家高新区成功入选生态环境部首批城市和产业园区减污降碳协同创新试点
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!