北极星
      北极星为您找到“自养反硝化技术”相关结果133

      来源:环保工程师2021-10-26

      2、提高泥龄/mlss提高泥龄的最终表现是mlss的提高,冬季微生物增殖缓慢,做为自养菌的硝化细菌增殖更为缓慢,提高泥龄可以使硝化细菌能保持在一定的范围内(颜胖子:目的是保证硝化细菌为优势菌种),并且适当提高污泥浓度

      污水处理厂=资/能源工厂:荷兰早期实践

      来源:水业碳中和资讯2021-10-22

      自上世纪90年代可持续污水处理技术理念率先在荷兰提出后,节能降耗、资/能源回收便已成为污水处理工艺研发的目标,因此在荷兰出现不少革命性的工艺,如,反硝化除磷/侧流磷回收、厌氧氨氧化、好氧颗粒污泥等等。

      氨氮与TP交替超标 是什么原因?

      来源:环保工程师2021-10-08

      1、泥龄问题作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝化作用也十分微弱

      高氨氮有机废水深度处理新利器:SCONDAⓇ工艺

      来源:环境纵横2021-08-25

      基于厌氧氨氧化(anammox)的自养生物脱氮工艺是废水脱氮领域涌现的新型脱氮技术,为废水高效节能处理提供了新的思路和方向。..., partialnitritation,denitritation andanammox),该工艺有机结合了短程硝化-反硝化-anammox等异养与自养脱氮过程,可实现高浓度含氨有机废水的一步式高效处理

      [碳中和] 低能耗<mark>技术</mark>之把厌氧氨氧化说清楚

      来源:惟创环境2021-06-21

      硝化过程需要消耗氧气,而反硝化过程主要是由异养菌在起作用(需从有机化合物中获取碳源的叫异养菌;可从无机化合物,比如co2中获取碳源的叫自养菌),因而需要曝气,会产生大量能耗,并且需要消耗大量有机碳源,反应过程中还会释放

      什么是<mark>反硝化</mark>滤池?

      来源:环保工程师2021-06-16

      反硝化滤池用于后置反硝化处理在欧美等使用已有20~30年的应用经验,对于深度脱氮而言更是实现了出水技术极限(lot)。...还有部分的自养反硝化细菌,以无机的碳(如co2、h2co3等)作为碳源,以氢和铁、硫等的化合物为电子供体。

      来源:环保工程师2021-05-06

      近年来,生物脱氮领域开发了许多新工艺,主要有:同步硝化反硝化;短程硝化反硝化;厌氧氨氧化和全程自养脱氮。...这些新发现使得同时硝化反硝化成为可能,并奠定了snd生物脱氮的理论基础。硝化反硝化的反应动力学平衡控制是同步硝化反硝化技术的关键。

      生化法除氨氮的<mark>技术</mark>汇总!

      来源:环保工程师2021-04-13

      一、传统生物脱氮法传统的生物脱氮技术始于上世纪30年代,真正应用于20世纪70年代。自barth三段生物脱氮工艺的开创,a/o工艺、序批式工艺等脱氮工艺相继被提出并应用于工程实际。...3、全程自养脱氮(canon)canon工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是sharon和anammox工艺的结合,在同一个反应器中进行。

      北京建筑大学吴莉娜:UASB+A/O+ANAOR+ASBR实现垃圾渗滤液<mark>自养</mark>深度脱氮

      来源:中国给水排水2021-02-23

      而厌氧氨氧化(anammox)技术,只需将部分氨氮(nh4+-n)氧化成亚硝酸盐(no2--n),no2--n再和剩下的nh4+-n反应直接生成n2,实现自养脱氮而无需投加无机碳源。...因此,整个工艺通过短程硝化-厌氧氨氧化和短程反硝化-厌氧氨氧化工艺耦合实现了垃圾渗滤液的nh4+-n和tn的出水达标排放。2、微生物多样性分析对系统中的微生物进行了研究。

      来源:环保工程师2021-01-14

      mbbr同步硝化反硝化控制因素实现 mbbr 同步硝化反硝化的关键技术是控制 mbbr 内硝化反硝化

      来源:环境与发展2021-01-12

      2.1.2 厌氧-好氧法此种方法作用于好氧环境中,应用自养硝化菌对工业废水中含有的氨氮进行转化,形成硝态氮。...将半软性填料放入缺氧段中,针对好氧污泥,运用内循环的方式,这样能够保证消化与反硝化都处在活性最高的状态中。

      彭永臻课题组 | 主流城市污水部分厌氧氨氧化<mark>技术</mark>的研究与工程化应用

      来源:给水排水2021-01-12

      目前两段式与一体化城市污水短程硝化/厌氧氨氧化自养脱氮工艺的可行性在不同实验室得以证明,国际一些知名水务集团相继建立了中试基地进行技术验证探索。...短程反硝化/厌氧氨氧化(pd/a)技术的研究近年来不断取得新的重要进展。

      来源:环境纵横2021-01-11

      自养反硝化,高级氧化,吸附或反渗透工艺等;同时需要增加化学除磷或混凝沉淀等工艺将总磷降至0.3 mg/l以下。...已有的工艺升级改造主要采用在传统生物处理过程后叠加深度处理工艺的方法,常用的深度处理工艺有混凝沉淀,反硝化滤池,曝气生物滤池,高级氧化等。

      来源:淼知水圈2021-01-08

      第二段生物滤池主要对污水中的氨氮进行硝化,在该段生物滤池中,由于进水中有机物浓度较低,异养微生物较少,而优势生长的微生物为自养硝化菌,将污水中的氨硝化成硝酸盐或亚硝酸盐。

      城市污水厂部分<mark>反硝化</mark>滤池启动及运行

      来源:《中国环境科学》2020-12-29

      二级出水中最主要的污染物是 no3--n 及可能残留的nh4+-n.部分反硝化技术可以将反硝化过程控制在 no3--n 还原产生 no2--n 的阶段,然后再与厌氧氨氧化工艺耦合实现 nh4+-n 和

      刘洪波团队:微生物 大作用 弱电强化助力污水深度脱氮

      来源:净水万事屋2020-12-25

      ,提供自养反硝化脱氮电子供体等形式提升脱氮效率。...在生物污水处理中,除外加碳源、对传统污水生物处理工艺的改进以及引进新工艺等方法应对污水处理碳源不足的问题外,电极固定化酶、mfc、mec、ber 等多种形式的生物电刺激方法逐步应用于低c/n 污水生物反硝化处理以增强微生物代谢活性

      苏州科技大学陈重军:厌氧氨氧化颗粒污泥的研究进展

      来源:中国给水排水2020-12-15

      图文摘要1 引言传统生物脱氮工艺是基于硝化-反硝化过程,最后转化为氮气,工艺流程长,脱氮负荷低,占地面积大,投资高。因此,进一步探索高效率、低能耗的废水脱氮技术已成为废水脱氮领域的重要内容。

      污水脱氮进入“0”碳源绿色节能新时代!

      来源:走进水专项2020-11-16

      技术利用矿物材料调控的反硝化过程,在低碳氮比条件下实现硝酸盐高效去除;首次阐释了自养菌与异养菌的协同共生关系,揭示了天然矿物调控的不同来源异养碳源与单质硫/硫铁矿协同体系的元素转化行为和微生物代谢机制

      来源:淼知水圈2020-10-26

      3、膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。...主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。1、短程硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。

      来源:环保工程师2020-10-12

      2、提高泥龄/mlss提高泥龄的最终表现是mlss的提高,冬季微生物增殖缓慢,做为自养菌的硝化细菌增殖更为缓慢,提高泥龄可以使硝化细菌能保持在一定的范围内(颜胖子:目的是保证硝化细菌为优势菌种),并且适当提高污泥浓度