登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:采用生物滤池探究部分反硝化(NO3--N 还原到 NO2--N)工艺应用于城市污水厂深度脱氮的可行性.以实际二级出水为进水,考察滤速、碳氮比(C/N)等影响因素对滤池快速启动及稳定运行的影响,分析了滤池沿程水质变化和系统微生物群落结构.结果表明,控制高滤速和低C/N,3d可实现部分反硝化滤池的快速启动,滤池 120d 平均亚硝态氮累积率(NTR)为 60.3%,最高可达 82.1%,成功构建了连续流生物膜部分反硝化工艺.高滤速条件有助提高滤池的 NO2--N 积累率,C/N 对 NO2--N 积累率的影响较小,C/N 为 2~4,部分反硝化滤池的 NTR 维持在 62.0%.沿程数据表明底部 40cm 的滤料层是部分反硝化滤池 NO3--N 去除和 NO2--N 累积的主要反应区域.由于采用实际水厂二级出水进行研究,扫描电镜和高通量测序结果表明存在多种具有反硝化功能的微生物,系统的微生物多样性较高。
关键词:部分反硝化;生物滤池;亚硝酸盐积累;深度脱氮;二级出水
随着污水排放标准的不断提高,城市污水处理厂出水氨氮及总氮难以实现稳定的达标排放,一般需要进行深度处理。最常用的深度处理工艺是反硝化生物滤池(DNBF),但存在碳源投加量大、污泥产量大、反冲洗频繁及微生物分泌物质引起严重的膜污染等问题,导致部分工艺不能稳定运行。二级出水中最主要的污染物是 NO3--N 及可能残留的NH4+-N.部分反硝化技术可以将反硝化过程控制在 NO3--N 还原产生 NO2--N 的阶段,然后再与厌氧氨氧化工艺耦合实现 NH4+-N 和 NO3--N 的同步去除,是一种新型的污水脱氮处理技术.基于此提出应用于深度脱氮的部分反硝化耦合厌氧氨氧化二级滤池的工艺路线.该工艺理论上可节省 79%的碳源,氨氮可来源于二级生物处理剩余氨氮或者引入部分初沉池原水,可节省曝气成本;其次,厌氧氨氧化菌为自养菌,污泥产量低,对后续膜处理工艺影响小,该工艺的开发及应用将大幅降低建设投资费用及运行费用.
Ji 等实现了高 NO2--N 积累的部分反硝化工艺,长期运行 NO2--N 积累率大于 80%;王维奇等研究了 SBR 系统中不同驯化方式对 NO2--N 积累的影响;Cao 等[11]和 Li 等甚至实现了NO2--N 积累率大于 90%,证明了部分反硝化工艺的可行性和稳定性;Du 等和 Cao 等也证明了部分反硝化耦合厌氧氨氧化工艺的可行性,用于高效地处理含硝酸盐的污水.但是目前有关部分反硝化的研究多以人工配水和活性污泥系统为主,且多采用序批式运行的 SBR 反应器,更偏重初步的可行性研究和机理探索,采用实际污水进行深度脱氮的部分反硝化工艺的研究较少.
基于此,本文以污水厂实际二级出水为进水,采用连续流的滤池反应器,进行部分反硝化工艺的启动与运行,并探究滤速及 C/N 对该工艺部分反硝化的影响,系统地分析反应器内的水质变化特性和NO2--N积累特性,并对其中的微生物结构进行了观察和分析.
1 材料与方法
1.1 试验装置
部分反硝化所用的滤池装置由有机玻璃制成,滤池总高度 250cm,直径 10cm,有效容积 15.7L.滤池从下至上分别是 20cm 进水混合区、20cm 承托层、120cm 滤料层、60cm 清水区,承托层由鹅卵石构成,滤料层所填充滤料为 3~5mm 的陶瓷颗粒,鹅卵石和陶瓷颗粒均取自污水厂反硝化滤池的余料.
滤池采用底部进水顶部出水的运行模式,配有进水水箱、碳源加药箱、出水水箱及反冲洗水箱,在滤池底部进水和碳源分别通过蠕动泵控制,二者混合后进入滤池底部进水混合区.滤池反冲洗采用气冲-气水冲-水冲的方式,配有反冲洗水泵、空压机及流量计.
1.2 试验用水和接种污泥
部分反硝化滤池采用自然挂膜法,未接种污泥.本试验直接采用北京某再生水厂二级出水作为进水,进水水质如表 1.部分反硝化滤池外加碳源乙酸钠,根据试验需要进行不同浓度的添加.
1.3 试验方法
模拟工艺实际运行工况,进水 DO 和温度不做控制.本试验设置高浓度低流量(C=50mg/L,滤速为1,2m/h)和低浓度高流量(C=15mg/L,滤速为 4,5m/h)2种启动方式,考察部分反硝化工艺的快速启动.
采用控制变量法进行C/N和滤速对部分反硝化滤池的影响试验,控制滤速不变,分别设置不同的C/N(2,2.5,3,3.5),观察 C/N 对部分反硝化的影响;控制 C/N 不变,设置 3 组滤速条件(2,4,5m/h),考察滤速对部分反硝化滤池的影响.NO3--N 到 NO2--N 转化率(NTR)即亚硝态氮累积率,是指系统内去除的 NO3--N 转化为 NO2--N的比例,试验装置为连续流反应器,NTR的计算方法为:
1.4 分析方法
样品水质指标检测按照国家标准方法进行.NO3--N 和 NO2--N 采用离子色谱法测试,SCOD 采用哈希快速测定试剂检测.
生物样品的测试包括扫描电镜和高通量测序.采用 SU8020 日本日立(Hitachi)扫描电镜进行观察,预处理方法参照文献;此外,从滤料层底部处取滤料 50mL 置于 250mL 锥形瓶,加 100mL 超纯水恒温振荡,得到的混合液进行离心,然后经低温干燥冻干机干燥后,用于高通量测序分析.在上海美吉生物医药科技有限公司的I-Sanger云平台进行数据的处理和分析.
2 结果与讨论
2.1 部分反硝化滤池启动与运行
2.1.1 部分反硝化滤池的快速启动
控制进水C/N 为 2.5,考察高浓度低流量启动方式的NO2--N积累情况.如图 1 所示,初期污水厂二级出水携带的微生物在滤料上附着,利用进水中的硝酸盐和外加的乙酸钠进行反硝化,生物膜快速生长,初期出现稳定的 NO2--N 积累,系统积累的最高 NO2--N 为10mg/L 左右.但是经过第二次反洗后 NO2--N 的积累消失.运行 2 个周期后提高滤速观察,仍未有明显的NO2--N 积累出现.出现 NO2--N 积累是反硝化滤池挂膜启动阶段较常出现的现象,然后随着生物膜的成熟和电子供体的充足逐渐消失.后几个周期未出现 NO2--N的稳定积累说明以高浓度低流量的方式未能成功启动部分反硝化工艺.
2.1.2 部分反硝化滤池的稳定运行
长期运行结果如图 2,120d 平均 NO2-N 累积率为 60.3%,最高达82.1%,部分反硝化工艺启动后可保持较好的 NO2--N 积累特性,成功构建了生物膜系统高 NO2--N 积累的部分反硝化工艺.在实际项目中,会遇到检修、设备故障等一些了突发事故等,导致工艺停止运行的情况.在试验进行 100d 左右,停止运行 10d 后重新启动反应器,结果发现 1d 即可恢复至原有部分反硝化效果,说明该工艺相对稳定,有一定的抗冲击能力.
2.2 部分反硝化滤池的影响因素
2.2.1 滤速对部分反硝化滤池的影响
滤速是滤池运行的关键参数,不仅决定污染物与微生物的接触时间,而且其大小形成不同强度的水利剪切作用也会影响滤料生物膜的形成、结构及稳定性等,从而导致不同的运行效果.图 3(a)为滤池在 C/N=2时3种滤速条件下(2,4,5m/h)运行结果.2,4,5m/h滤速下平均 NO2--N 累积率分别为 60.3%,59.6%和 68.1%,5m/h 条件下滤池 NO2--N 积累效果最好,可能与高滤速较强的剪切力有关.滤速越高,剪切力越大,有助于加快生物膜的更新,从而能维持较高的部分反硝化特性。
为了进一步分析滤速对部分反硝化的影响,提高 C/N 为 3,再次进行不同滤速的对比试验.结果发现提高 C/N 之后,2,4 和 5m/h 滤速下平均 NO2--N 累积率分别为64.6%,61.9%和65.3%,依旧是在5m/h的运行条件下,获得较高的 NO2--N 积累率,但是由于C/N 提高,高滤速使生物膜的剪切力变弱.C/N 较高时滤速对NO2--N 积累的影响变弱。
2.2.2 C/N 对部分反硝化滤池的影响
文献表明,C/N 对部分反硝化过程 NO2--N 的积累有重要影响.C/N 过低,部分反硝化微生物得不到足够的能量和电子供体来维持活性并进行硝酸盐还原;C/N 过多,部分反硝化不易维持.也有研究表明,部分反硝化工艺一旦启动,一定范围内 C/N 波动对NTR 的影响不大.如图 4,在部分反硝化滤池中,滤速为 2m/h,C/N 为 3 时平均 NO2--N 累积率为 64.6%,略高于 C/N 为 2 的 61.2%,但是区别并不明显.当滤速为 4m/h,C/N 为 2、2.5 和 3 时平均NO2--N 积累率分别为 61.6% 、 58.6% 和 62.9%; 滤速为5m/hNO2--N 积累率分别为 64.0%、64.5%、59.7%和 62.9%.可见,在本文的试验条件下,滤速不变,C/N在 2~4 范围内波动部分反硝化滤池的 NO2--N 积累特性基本维持不变.与 Du[23]研究结果一致.
在连续流滤池工艺中,C/N 范围为 2~4,部分反硝化滤池的 NO2--N 累积率维持在 62%,具备稳定可靠的突出优点.其部分反硝化功能维持稳定的原因可能是启动初期高滤速形成的生物膜能进行NO2--N 积累,随后通过不断的反洗优化生物膜结构和功能,因此在不利于 NO2--N 积累的滤速条件下(2m/h)也能稳定的维持 60%的NO2--N 累积率.
2.3 部分反硝化滤池沿程水质变化
在运行的第 155d,滤速为 4m/h,C/N=3 的条件下取沿程水样分析,结果如图 5(a).在底部滤料层下部,NO3--N 的降解较快,同时也出现较多的 NO2--N的积累.其中沿程 pH 值逐渐升高,但是由于进行的是部分反硝化,pH 值升高并不明显,由底部进水的7.28 提高到出水的 7.43.由于未进行消氧处理,进水DO 较高为 4.6mg/L,随着反应的进行,DO 逐渐降低,底部 40cm DO<1mg/L,过高的 DO 对部分反硝化不利,的 DO 对部分反硝化不利,进水的 SCOD 部分被用来消除这部分 DO 以营造部分反硝化所需要的缺氧环境,剩余的 SCOD 用于进行硝酸盐的还原.不同高度滤料层对 NO3--N 降解的占比和对NO2--N 积累的占比分布,结果如图 5(b)所示.硝酸盐的去除主要集中在承托层和底部 40cm,其中底部20cm 滤料层去除了 43%的 NO3--N 并积累了 48%的NO2--N,是部分反硝化滤池的主要反应区域.其原因主要是滤池反应器为推流式反应器,底部基质充足,生物膜活性较高.沿滤料层向上,水中剩余基质变少导致滤料上层生物生长速率低,反应活性也较低.对底部 40cm 处的出水进行长期监测,结果如图 6 所示.其 NTR 与总出水保持一致,说明部分反硝化滤池的有效高度为 40cm,当底部微生物出现堵塞或者脱氮效果变差时,需要及时进行反冲洗和采取应急措施,同时可以为部分反硝化滤池滤料层高度的合理设计提供参考.
2.4 生物膜形貌观察和群落结构
2.4.1 生物膜表面形貌结构
取反应器装填的空白滤料和运行 110d 后的滤料进行扫描电镜观察,如图 7 所示.滤料为陶瓷颗粒,表面粗糙且为多孔结构,有利于微生物附着形成生物膜.稳定运行一段时间后,陶瓷颗粒表面完全被覆盖,由于微生物的不断繁殖及胞外聚合物的分泌,微生物与胞外聚合物一起混合缠绕包裹在滤料表面,有一定厚度.由于进水为实际二级出水,表面的微生物多样,有杆菌、球菌等多种形态的微生物.
2.4.2 生物群落结构
取稳定运行阶段底部的滤料表面生物膜进行高通量测序分析.门水平主要以变形菌门为优势菌门,而大多数的反硝化菌都属于变形菌门.此外还包括拟杆菌门、绿弯菌门、酸杆菌门等.图 8 给出了样品在属水平上的物种相对丰度.
由于进水采用实际二级出水,挟带多种微生物,反应器内微生物多样性较高.系统中存在多种反硝化微生物 , 其中索氏菌属 Thauera(3.03%) 是Rhodocyclaceae科,Proteobacteria 菌门中的一类革兰氏阴性细菌,大部分为杆状且已知的该属菌株都是反硝化菌,研究发现其与部分反硝化的 NO2--N 积累有关,也在多个具有高NO2--N积累的系统中被发现,可能与系统中 NO2--N 积累相关.此外,Dechloromonas(6.49%)是隶属于 Proteobacteria菌门的可降解芳香族化合物的反硝化菌,已知其内含有反硝化除磷菌群,可能是随二沉池进入反应器并进行富集.Comamonadaceae(4.88%)是一类与PHA 降解有关的脱氮菌,同时也会产生一些胞外聚合物.Saprospiraceae(4.08%)与蛋白质降解相关.
Zoogloea(2.26%)是污水处理厂常见的反硝化微生物,与菌胶团的形成有密切关系,在生物膜形成阶段,对生物膜的形成有促进作用.还有 Flavobacterium、Denitratisoma 等多种具有好氧反硝化功能的微生物,以适应进水中较高的 DO.多种反硝化微生物共同完成了部分反硝化滤池的反硝化过程和部分反硝化过程.
3 结论
3.1 以实际二级出水为进水,通过控制高滤速低C/N,3d 可实现部分反硝化滤池的启动,平均 NTR 达60%;部分反硝化滤池可维持长期稳定,平均 NTR 为60.3%,最高 NTR 达 82.1%.
3.2 高滤速有利于 NO2--N,的累积,但随着 C/N 的提高,高滤速促进作用减弱;滤速一定,C/N 范围为2~4,部分反硝化滤池的 NTR 维持在 62%.
3.3 底部 40cm 滤料层是部分反硝化滤池 NO3--N去除和 NO2--N 累积的主要反应区域.
3.4 部分反硝化滤池的微生物多样性较高,存在Dechloromonas 、 Thauera 、 Flavobacterium 、Denitratisoma 等多种具有反硝化功能的微生物,通过控制进水条件和反洗频率等实现调控各微生物之间相互作用来维持系统稳定的高NO2--N积累特性.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
11月20日,陕西省榆林市生态环境局网站发布一则行政处罚决定书,陕西省水务集团吴堡县污水处理有限公司因生物滤池除臭系统停运被罚10万元。行政处罚决定书(陕西省水务集团吴堡县污水处理有限公司)榆林市生态环境局行政处罚决定书陕K环罚〔2023〕184号当事人名称:陕西省水务集团吴堡县污水处理有限公司
截至2020年底,全国地级及以上城市2914个黑臭水体消除比例达到98.2%。“十四五”期间,生态环境部将继续以水生态保护修复为核心,巩固深化碧水保卫战成果,积极推进美丽河湖保护与建设。2020年10月,中国城镇供水排水协会发布《城镇水务2035年行业发展规划纲要》,其在城镇水环境2035年总体目标中提出
污水厂提标改造也能事半功倍是最新的一个,这个话题的出炉说来也有意思。去年讲了一年因地制宜的污水提标改造解决方案,获得了不少好评(所有的批评也都是好意的,因此我都把它归纳到好评范畴内)。
对饮用水安全关注的日益提升,以及水环境污染情况的多样化,导致常规给水处理工艺技术在面对特定污染特征的原水情况下可能“力不从心”,将污水处理技术应用于给水处理工艺,已经成为了在特定情况下的工艺探索方向。
对于部分城市生活污水处理厂,进、出水水质随季节性波动较大。以山西省某污水处理厂为例,按《地表水环境质量标准》(GB3838-2002)准Ⅴ类(TN≤10mg/L)标准考核,夏季出水TN不能达标,冬季NH3-N不能达标,通过新增两级生物滤池的深度处理工艺,采用上向流生物滤池及专有的布水布气系统,可根据水质处理需求实现硝化与反硝化模式的切换,保证TN及NH3-N全年稳定达标。本项目采用智能模块化装备的建造模式,具有安装便捷,占地面积小,不受施工场地限制等优势。
曝气生物滤池工艺可以节省占地面积和建设投资。该工艺集生物降解和固液分离于一体,不设二沉池。此外,由于采用的滤料粒径较小,比表面积大,附着生物量高(可达10-20g/L)再加上反冲洗可有效更新生物膜,保持生物膜的高活性,这样就可在短时间内对污水进行快速净化。曝气生物滤池水力负荷、容积负荷大大高于传统污水处理工艺,停留时间短,因此所需生物处理面积和体积都很小。主要构筑物通常为常规污水厂占地面积的1/10-1/5,厂区布置紧凑。
BAF工艺学名叫曝气生物滤池,是80年代末在欧美发展起来的一种新型生物膜法污水处理工艺。曝气生物滤池是一种膜法生物处理工艺,微生物附着在载体表面,污水在流经载体表面时,通过有机营养物质的吸附、氧向生物膜内部的扩散以及生物膜中所发生的生物氧化等作用,对污染物质进行氧化分解,使污水得以净化。
一、曝气生物滤池特点集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保
近日,《净水技术》小编关注到,北京工业大学杨庆教授团队在城镇污水处理生物滤池工艺中N2O释放问题的研究上取得了新的进展,成果以“Impactofgas-waterratiosonN2OemissionsinbiologicalaeratedfiltersandanalysisofN2Oemissionspathways”发表于ScienceoftheTotalEnvironment期刊(IF:6.551)。净水
化工企业废水具有有机物污染浓度高、毒害性强、难以生物降解及色度高等特点,是一类难处理的废水。常规的处理方法是组合使用物化和生化技术,但生化处理后的尾水水质复杂、可生化性低,含有稳定的难降解的有毒污染物。因此采用有效的深度处理工艺尤为重要。某化工企业主要生产杀菌剂、除草剂、中间体等
在脱氮工艺中氨氮转化成氮气有很多的途径,也存在很多难以控制的中间过程及中间产物,恰恰是这些难控制的中间过程决定了最新的脱氮工艺的研究方向,本文将介绍一下短程硝化及短程反硝化的内容!什么是短程硝化?废水生物脱氮,一般由硝化和反硝化两个过程完成,而硝化过程分为氨氧化阶段和亚硝酸盐氧化
污染物生化去除率差,难道只怪污泥有没有认真工作?有的时候找找自己的原因,有没有给污泥提供适合的条件!就像污水处理行业中的一句名言:“细菌并不知道池子的形状和工艺的名称,只要有硝酸盐、碳源和氧气不存在的条件,它就在那儿反硝化。”!本文将具体介绍一下影响各类污染物生化去除效果的影响因
【社区案例】两级AO,养殖场污水处理。SV30如图:一级缺氧、好氧,二级缺氧、好氧SV30,想知道如何根据SV30去判断硝化、反硝化正不正常。在脱氮系统中,通过SV来判断硝化反硝化是否正常,主要是通过沉降比实验中是否有反硝化气泡的产生,一般在30分钟内就可以观察到,气泡产生的越多,说明反硝化越剧烈
中国首个城市污水处理概念厂——宜兴城市污水资源概念厂的深度脱氮单元,采用了中持的自“硫自养”发展而来“珊氮”自养反硝化脱氮滤池,出水TN≤3mg/L,每年可减少碳源840吨。那么不用碳源的硫自养反硝化到底是个啥?一、什么是硫自养反硝化?硫自养反硝化技术是以硫化钠(Na2S)、和硫代硫酸钠(Na2S2O3
编者按:污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化
【社区案例】马上入冬了,昨天水温连续下降了接近10度,现在氨氮持续升高中,北方的朋友们介绍介绍经验。生物脱氮对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污
AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,硝化菌进行硝化反应,氨氮转化为硝化氮并回流到缺氧段,反硝化细菌在缺氧池利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成游离态氮,同时获得同时去碳和脱氮的效果。一、生物脱氮的基本原理传统的生
反硝化反应是反硝化类细菌利用硝态氮/亚硝态氮为电子受体来氧化有机物或无机物从而实现自我繁殖的异养菌和自养菌的生理过程。大体上可分为两类,一类为异养菌(以有机碳源为电子供体),一类为自养菌(以硫自养反硝化菌为例,利用低价态的硫为电子供体来还原硝氮/亚硝氮)。下面我重点啰嗦一下异养型反硝化
【社区案例】缺氧池反硝化看着还可以啊,产生的小气泡很多,打上来观察一下,一会就浮着一层泥,但是总氮还是非常高,是什么原因?缺氧池脱氮效率差,其实和TN超标的问题重合度很高,颜胖子之前写过很多氨氮和TN的文章,反硝化脱氮效率低的问题并也不是很复杂,对照文内原因一一对应就行了,本文增加了
一、什么是硫自养反硝化?硫自养反硝化技术是以硫化钠(Na2S)、和硫代硫酸钠(Na2S2O3)单质硫(S0)等还原态硫源为电子供体,CO32-、HCO3-、CO2作为无机碳源,在缺氧环境下将NO3--N还原为N2的一种新型的自养反硝化技术。硫自养反硝化技术的研究最早源于20世纪的70年代,与其他自养反硝化技术相比,被作为电
8月1日,福州滨海新城空港污水处理厂PPP项目(反硝化滤池标段)设备采购、安装及调试招标公告发布,项目最高限价为739.18万元。本次招标范围:福州滨海新城空港污水处理厂建设规模为5.0万m3/d,出水水质指标执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准(具体以环评批复要求为准)
中国首个城市污水处理概念厂——宜兴城市污水资源概念厂的深度脱氮单元,采用了中持的自“硫自养”发展而来“珊氮”自养反硝化脱氮滤池,出水TN≤3mg/L,每年可减少碳源840吨。那么不用碳源的硫自养反硝化到底是个啥?一、什么是硫自养反硝化?硫自养反硝化技术是以硫化钠(Na2S)、和硫代硫酸钠(Na2S2O3
一、什么是硫自养反硝化?硫自养反硝化技术是以硫化钠(Na2S)、和硫代硫酸钠(Na2S2O3)单质硫(S0)等还原态硫源为电子供体,CO32-、HCO3-、CO2作为无机碳源,在缺氧环境下将NO3--N还原为N2的一种新型的自养反硝化技术。硫自养反硝化技术的研究最早源于20世纪的70年代,与其他自养反硝化技术相比,被作为电
2021年11月3日,2020年度国家科学技术奖励大会在人民大会堂隆重举行。由哈尔滨工业大学、北京工业大学、中国科学院生态环境研究中心、中持水务股份有限公司、信开水环境投资有限公司共同完成的“污水深度生物脱氮技术及应用”项目(编号2020-F-304-2-01)荣获国家技术发明奖二等奖,主要完成人为:王爱杰、彭永臻、程浩毅、梁斌、邵凯、侯锋。
9月2日-7日,2021中国国际服务贸易交易会在北京举行。由新华网、中国社会科学院经济研究所主办的双循环新发展格局企业白皮书发布暨研讨会,作为服贸会系列活动之一,于3日同期举行。会上,《双循环新发展格局企业白皮书》(下称“白皮书”)正式发布。北控水务污泥双回流-AOA深度脱氮除磷技术(下称“AOA新技术”)创新引领环境产业高质量发展案例成功入选,成为环保行业唯一一家入选白皮书的企业。
导/读自养脱氮滤池作为污水处理厂二级生化后的深度脱氮技术,选用2~3mm粒径的自养活性滤料,稳定实现出水TN≤10mg/L,且零(或低)碳源添加,助力降碳排量。下向流的自养脱氮滤池,HRT约20min,进水DO高于4mg/L时,平均脱氮浓度仍达8.50mg/L,脱氮率67%,脱氮负荷0.64kg/(m3·d),其药耗较异养脱氮时可降耗30%~50%,宜控制脱氮滤池的进水DO≤2mg/L。自养脱氮滤池需长期关注NO2-N、S2-、SO42-等副产物累积的不利影响
由于农业施肥的不合理使用和生活污水、工业污水、养殖污水、农田径流的直接排放,大量氮、磷等营养物质被排入自然水体,对水生生态系统的结构和功能构成严重威胁。
题目:SludgefermentationliquidadditionattainedadvancednitrogenremovalinlowC/Nratiomunicipalwastewaterthroughshort-cutnitrification-denitrificationandpartialanammox作者:ShengjieQiu(邱圣杰),JinjinLiu(刘瑾瑾),LiangZhang(张亮),QiongZhang(张琼),YongzhenPeng()(彭永臻)作者单位:Nationa
推荐理由:垃圾渗滤液含有高浓度的NH4+-N,属于难降解废水。传统脱氮工艺需投加大量无机碳源,是造成垃圾渗滤液处理成本高的原因之一。与传统脱氮工艺相比,厌氧氨氧化(Anammox)技术可大幅减少曝气量且无需投加碳源,从而降低垃圾渗滤液处理成本。然而,针对亚硝酸盐型厌氧氨氧化过程来说,实现这一
2020年12月28日,城镇污水深度处理与资源化利用技术国家工程实验室建设项目验收会在北京工业大学水环境楼举行。北京工业大学副校长聂祚仁院士出席验收会,会议由北京市发改委高技术处赵英俊处长主持。聂祚仁院士代表学校致辞,他首先感谢市发改委领导、验收评审专家对北京工业大学的大力支持和帮助。随
近日,净水小编了解到,上海理工大学刘洪波教授团队在微生物弱电强化微碳源污水深度脱氮研究方面取得突破,2020年共有3篇系列高水平论文成果发表在ScienceoftheTotalEnvironment(IF:6.551)等国际知名期刊。为促进成果分享交流,小编邀请了刘洪波教授团队对成果进行整理。研究背景近年来,经济快速发
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!