图2 义乌江柱样粒度垂向特征
3.2 磁性特征
3.2.1 磁性矿物的类型及含量
S-100mT、S-300mT反映沉积物中亚铁磁性矿物(如磁铁矿)与不完整性反铁磁性矿物(如赤铁矿、针铁矿)的相对组成,随着不完整反铁磁性矿物含量的增加而下降.义乌江柱样的S-100mT均在70%以上,S-300mT均在90%以上,说明亚铁磁性矿物主导了沉积物的磁性特征.相比第一、二层,第三层S比值向上呈现下降趋势,表明高矫顽力组分的相对贡献上升.
磁性参数χ和SIRM一般指示沉积物中磁性矿物的含量,与χ不同,SIRM不受顺磁性和抗磁性矿物的影响,主要反映亚铁磁性矿物的含量.义乌江柱样χ和SIRM之间显著相关(r=0.80,p<0.05),进一步说明了义乌江沉积物磁性特征由亚铁磁性矿物主导.典型样品热磁曲线显示了580 ℃的居里温度,说明样品磁学性质由磁铁矿主导.加热曲线上磁化率随着温度升高至300 ℃附近达到峰值,然后下降,至400 ℃附近后迅速升高,在520~530 ℃之间达到峰值后急剧下降.300 ℃附近出现的峰值可能是亚铁磁性矿物解阻所致,520~530 ℃的峰值主要是由于顺磁性矿物分解产生新的亚铁磁性矿物.冷却曲线位于加热曲线的上方,说明在加热过程中有弱磁性矿物转化为强磁性矿物.
χARM受到磁性矿物晶粒的显著影响,单畴(SD)颗粒的亚铁磁性矿物χARM显著高于多畴(MD)或超顺磁(SP)颗粒.磁性参数χ、SIRM、χARM总体上第一、二层值较低,12 cm以上值较高,反映了亚铁磁性矿物含量自下而上的增加趋势.HIRM反映了不完整反铁磁性矿物的含量,随不完整反铁磁性矿物含量的增加而增大.除第一层外,义乌江柱样HIRM自底部向上单调上升.
3.2.2 磁性矿物晶粒特征
χfd%对细粒径的超顺磁性(SP)颗粒较为敏感,反映了其对磁性特征的贡献.义乌江柱样的χfd%小于5%,说明SP颗粒总体含量很低,但20~2 cm深度SP颗粒比例明显高于柱样底部和表层.比值参数χARM/χ指示磁性矿物颗粒的大小,较高的比值反映了单畴(SD)颗粒,较低的比值指示了多畴(MD)或超顺磁(SP)颗粒.χARM / SIRM的指示作用与χARM/χ类似,但不受超顺磁SP晶粒的影响.自第一层到第二层,随深度变浅,义乌江柱样χARM、χARM/χ和χARM/ SIRM呈现增加趋势,第一层中,上述两个参数又下降,反映了磁性矿物晶粒由底部向上呈现先变细再变粗的趋势.
图3 义乌江柱样磁性特征的垂向变化
3.3 重金属污染特征
3.3.1 金属元素与TOC含量
如图 5所示,根据垂向特征,可将元素分为3类:第一类包括常量元素Al、Fe、Ti、Mn和微量元素Cr、Cu以及TOC,在柱样第一层含量较高,第二层自下而上呈现增加趋势,第三层含量与第一层较为接近,变化不大,Cr、Cu在表层有下降趋势;第二类包括Zn、Cd和Pb,含量自柱样底部向上呈增加趋势,在柱样表层虽有轻微下降趋势,但仍高于第一层和第二层;第三类为Ni,第一层含量明显高于第二、第三层,自第二层底部向上呈先增加后降低趋势.总体上,除Ni外,金属元素的垂向变化具有一定相似性,反映了这些元素具有相似的来源或地球化学行为.相关分析结果表明(表 1),义乌江上述元素及TOC与<32 μm粒级含量具有显著正相关性,指示了上述元素及TOC在细颗粒沉积物中富集.
图4 典型样品热磁曲线(粗线表示加热曲线)
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有