2.3MnO2负载量均匀性表征
由于催化剂的制备是将成型的块状催化剂单体浸渍于硝酸锰溶液,而催化剂单体有壁厚,因此,可能会导致块状催化剂上负载的MnO2含量沿壁厚会产生浓度梯度。催化剂的活性测试采用的是研磨后的粉末,因此可能会因为负载量浓度梯度的问题带来实验误差。
因此,为表征催化剂上MnO2分散的均匀程度以及MnO2浓度梯度,首先对粉末状催化剂RSCR-II进行了电子显微镜扫描;然后对块状催化剂某一蜂窝通道表面(8mm×1.2mm×50mm单片催化剂)以及该片催化剂研磨得到的粉末状催化剂进行了XRF表征。图2是粉末状RSCR-II催化剂的电子显微镜面扫图,可以看出,各个元素在催化剂表面的分布是非常均匀的。
因此可以判断,MnO2和其他的有效成分一样,均匀的分散在颗粒态催化剂的表面。
表2为片状RSCR-II催化剂(选取任意3点)以及磨成粉末后的XRF表征结果。结果显示,催化剂的主要成分并没有明显的差别。因此,本文介绍的再生催化剂的制备方法可以保证催化剂上MnOx的均匀性。原因是催化剂的浸渍时间相对较长,使催化剂上负载的MnOx相对含量沿催化剂壁厚不存在明显的差别。
2.4再生催化剂的表面物理特性
催化剂的表面物理特性主要指的催化剂的比表面积、孔体积。如表3所示,FSCR具备较高的比表面积以及孔体积。对于DSCR,其比表面积相对FSCR有所降低,但是催化剂的孔体积几乎没有变化,说明主要是微孔被堵塞。对于负载MnO2的再生催化剂样品,催化剂的比表面积和孔体积变小。造成这一现象的原因是MnO2在催化剂表面孔隙中的沉积[14]。
2.5再生催化剂的表面物质组成分析
图3为FSCR、DSCR和RSCR-II的XPS全谱扫描。可以发现,失活的SCR催化剂和新鲜的SCR催化剂的全谱几乎没有差别,催化剂表面的Ti、O、W、V等元素对应的结合能位置均出现相应的峰。
对RSCR-II,出现了Mn元素对应的峰,如图3所示。对Mn2p进行窄扫,如图3中插图所示,催化剂表面的锰氧化物是MnO2和Mn2O3物种的混合组成。其中,结合能641.8eV位置出现的峰归属于Mn3+,结合能642.9eV对应的位置出现的峰属于Mn4+[15]。在结合能高于646eV的位置出现的峰属于Mn2p的卫星峰[16]。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有