图9为纵向中心截面的水蒸气质量分数分布图.将其与图8对比可发现,温度场分布和水蒸气浓度场分布非常相似.
即喷淋液蒸发冷却的过程就是烟气的降温增湿过程,水滴的蒸发相变最终使烟气中的水蒸气浓度达到接近饱和,净烟气温度和大喷淋浆液的温度基本一致.可以近似认为,喷淋浆液的蒸发量和烟气的增湿量是相等的(不考虑烟气出口少量的细液滴夹带).
m3/h时(烟气初始温度、湿度同前)、经过4层喷淋后的纵向中心截面的气相温度分布.可见随着烟气量增大,温度梯度变化的区域不断扩大.6×105m3/h烟气量时,温度梯度变化区域在塔体径向仅为吸收塔的1.4倍直径;而在1.4×106,m3/h烟气量时,温度梯度变化区域在塔体左下部已经扩大到吸收塔的中轴线.
因此,烟气量越大,同一塔体内的高温区范围也越大.一般来说,塔内烟气温度越高越不利于脱硫效率的提高,由此也说明了为什么大烟气量下要保持、提高脱硫效率就更困难的事实.已有文献[10-12]往往以脱硫塔内温度均一为前提进行模拟计算,本文的模拟则证明塔内的温度不均匀性恰恰是无法忽略的.
因为气液间传质的关键参数,如扩散系数、平衡浓度、亨利系数等都和温度密切相关,故忽略温度场的不均匀性就势必会导致传质计算的偏差和不精确性.图10(b)与10(a)的工况相对应,为纵向中心截面的气相水蒸气质量分数分布图.
与图10(a)的温度梯度变化相仿,随着烟气量的增大,塔内的湿度梯度变化区域范围也不断增大.可见随着烟气量的增大,气液两相最终完成降温增湿过程的空间区域是不断扩大的.
吸收塔内烟气降温的过程实则就是烟气-浆液之间的热湿交换过程,烟气温度降得越低,浆液蒸发总量就越大,烟气的增湿程度也就越大.这种传热与传质的耦合关联,使得可以用脱硫后净烟气的湿度大小来印证烟气降温的效果.图12即为数天内现场吸收塔的排烟湿度(净烟气中水蒸气的体积分数)的截屏曲线和模拟数值的对比.
实测数据对应的现场工况虽略有波动,但原烟气参数基本上为:烟气量1.2×106m3/h,原烟气温度130,℃,原烟气中水蒸气的体积分数7%;数值模拟也按照这个工况进行仿真.由图12可见,脱硫后净烟气中水蒸气的体积分数从7%增至12%~13%,已基本达到饱和.
图中的模拟数值略低于实际运行曲线,原因可能是模型中在0~100℃之间取了10个温度点来给定水的饱和蒸汽压,模拟过程中其余温度点的蒸汽压通过插值的方法自动计算得到,由此可能会引起一些偏差.但总体来说,数值模拟结果和现场实测的运行曲线相吻合,模拟结果的正确性得到了现场实测数据的检验.
4结论
本文采用计算流体力学方法对大型脱硫塔的喷淋段进行仿真,模拟过程中充分考虑了气液两相间的耦合作用(传质、传动量和传热过程),得出了详细的气液两相流场和温度场、水蒸气组分场的分布规律,并和现场实际运行数据进行对比.
(1)良好的喷淋层设计和喷嘴布置能极大地消除刚性烟气高速冲入吸收塔后形成的旋涡区,从而对烟气流动起到很好的整流作用;防止烟气短路的同时,强化了气液接触的效果.
(2)吸收塔内采用实心锥喷嘴喷淋时,烟气入口轴线以上(或底层喷淋层以上)的区域基本可视作平推流,气相压力等势线和纵轴线基本垂直.
(3)原烟气的高速冲入对浆液滴的运动轨迹产生了明显的影响,由此在烟气入口处形成了一个斜向下呈“带状”的液滴浓度高值区.
(4)高温烟气冲入喷淋塔后,由于多层浆液大喷淋的洗涤,使烟气冷却过程在较短的时间内得以完成.喷淋塔内温度梯度变化较大的区域靠近吸收塔的入口,随着烟气量逐渐增大,温度梯度变化区域不断扩大.由此证明,以往文献中将塔内视为等温条件来进行计算或模拟将会带来误差,结果不精确.
(5)喷淋塔内的气相温度场梯度变化和水蒸气浓度场梯度变化有明显的一致性规律,证明了塔内的主要降温过程为蒸发冷却.
致谢:本文部分工作在上海超级计算中心的“蜂鸟”超级计算平台上完成,感谢上海超级计算中心提供的硬件和软件技术支持.
参考文献略
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有