2.2.4多效闪蒸
多效闪蒸(MSF)是基于解决多效蒸发过程中结垢严重的问题提出的,该法利用低温闪蒸技术将热废料逐级送至温度、压力降低的闪蒸室内进行浓缩,最终料液浓缩以盐浆形式排出。MSF技术成熟、运行稳定、对原料要求低、适合大型化工废水处理。但是由于其低压操作条件会产生较高的动力消耗,能耗要高于多效蒸发,且操作弹性较小并不适用于处理料液流量变化较大的情况。
2.2.5膜蒸馏
膜蒸馏(MD)技术以疏水微孔膜两侧的气压差为推动力,因受热由液相转化为气相的溶质扩散至膜的冷侧,并冷凝成液相,实现水资源回收和废水浓缩。膜蒸馏技术水回收率高,产水水质好,与MED相比设备成本低[15]。但实际应用中膜蒸馏仍然面临相变潜热遗失、疏水膜润湿漏液、膜干燥及膜污染等问题[3],而影响了膜蒸馏技术的稳定性,大大增加了运行成本。
研究表明,当废水TDS质量分数超过10%时,膜通量迅速下降,直至TDS质量分数为无机盐工业第49卷第1期1230%时,膜通量几乎消失[16]。与大多数膜分离技术一样,膜蒸馏对水质要求较高,对于有机物种类繁多、盐含量高的废水可以尝试采用膜集成工艺[3]进行处理。
李盛姬等[16]基于处理环氧树脂生产得到的废水的背景,将膜蒸馏与蒸发结晶结合联用,成功从高盐废水中回收达标盐,并实现了废水循环利用。膜蒸馏技术与热蒸发结晶技术耦合形成的膜蒸馏-结晶工艺如今成为研究热点,该工艺将溶剂蒸发和溶质结晶分隔开,具有良好的封闭性,膜蒸馏装置可以提供较大的传热面积,有效地减少了设备的占地面积。
膜结晶工艺在废水处理和盐类回收方面已有了一定的研究和发展,从盐分单一的NaCl高盐废水和Na2SO4高盐废水[17]到成分复杂的高盐有机废水,相信随着膜材料的改善及膜相关工艺的发展,对于高浓盐废水的处理,膜蒸馏-结晶技术能开创出一片新天地。
2.2.6含盐废水“零排放”集成工艺
浓盐废水蒸发脱盐大多以消耗大量的蒸汽为代价而制取工业生产回用水,减少用于加热待蒸发料液的蒸汽量可以直接降低蒸发成本。以此为目的,将超滤、反渗透等高效膜分离技术与热法蒸发工艺串联组成新型浓盐废水处理的集成装置具有更强的工业适应性。
一方面,提高待处理废水的浓度,即减少废液汽化量可直接减少蒸发时生蒸汽用量。权秋红等[18]设计了包括预处理系统、回用与减量化系统和零排放系统的处理反渗透浓缩液或高盐复杂废水的装置,采用浸没式微滤装置作为反渗透单元组件,依次利用中压、高压、超高压逐级加压反渗透装置对废水进行浓缩和回收,进入蒸发器中的废水仅为原废水的5%,大大减少了蒸发系统的热耗,运行成本至少缩减至之前的1/4。
工艺最后将机械蒸发和蒸发塘技术综合利用,根据季节变化调节固相盐干燥操作,最终达到废水“零排放”目标。应用于实际生产时,设备运行可实现长期稳定,废水回收率可达95%以上,适用于煤化工集中但水资源严重缺乏的西北地区。
另一方面,降低废液蒸发温度,采用负压蒸发也可以有效减少蒸汽消耗。针对反渗透浓缩液,汪亮亮[19]利用负压蒸发降低废水沸点,设计蒸发室采用多孔凹凸斜板使预热废水形成薄层液膜,增大气液接触面积,同时开启引风机增强蒸发室内空气流动,加强蒸发速率。含盐废水蒸发至饱和后送至结晶器内析出固相盐,废水回收率可达80%,运行稳定,并有效降低了蒸发能耗,可适用于大规模的工业废水处理。
3煤化工高盐废水处理前景及建议
如今对于煤化工高盐废水的处理,实验条件下虽可以达到废水“零排放”的理想结果,但现实生产过程中煤化工废水要实现全资源化的转变仍面临重重阻力,主要表现在废水成分复杂、高能耗、废渣填埋、工艺设备限制及投资运行成本高等方面。根据煤化工废水的特点,建议从以下方面进行优化。
3.1细化废水分类,各个击破
煤化工废水包括生产和生活废水两部分,废水中有机物、无机盐及微生物含量随着废水来源不同而有显著差异,若将生产厂区内废水混合处理势必会增大废水处理难度和负荷。
综合性的废水处理系统应建立针对不同种类废水的处理模块,对细化后的废水进行分类、分批处理,提高废水处理效率。而各类废水处理单元采用分级处理的方式,利用废水实时监测手段,为避免废水处理系统因废水流量及组成波动而产生停滞或瘫痪提供保障。
3.2采用复合工艺,扬长避短,节能降耗
作为煤化工废水处理的关键步骤,高盐废水处理以高耗能来换取水资源的重复利用和废物的达标排放。加热蒸发法是目前应用最广、最成熟的工艺技术,而巨大的能耗却为废水处理成本带来负担。采用多效蒸发、蒸汽再压缩蒸发(MVR蒸发)技术都可以有效减少热蒸发所需能耗,从而达到降低处理成本的目的。
为减少机械蒸发的蒸汽消耗量,降低蒸发单元能耗负荷,可采用复合蒸发工艺,即先将低浓度的高浓盐废水进行自然蒸发,提浓后的废水再输送至机械蒸发器中进行深度处理。
3.3固相盐分步分离,变危废为产品
煤化工废水“零排放”能否实现,最终在于高浓盐废水处理的完成度。机械蒸发利用大量热能得到的蒸发冷凝水回用时,会产生固相盐及更高浓度的废水,浓缩液经过循环蒸发最终达到零排放,而蒸发析出的固相盐由于成分复杂,一般作为危险废渣而被填埋。
为减少或避免废渣填埋带来的经济负担和环境危险,利用相关混合体系的相图指导混盐分离分步生产单组分盐的工艺已应用到实际中,并产生良好的效果,其最终得到的固相盐还可作为工业产品销售从而减轻废水处理经济成本。
兰建伟等[20]在2017年1月王彦飞等:煤化工高浓盐废水蒸发处理工艺进展13以往煤化工高盐废水MVR蒸发工艺的基础上,改进了蒸发过程中固相盐析出操作工艺,借鉴制盐行业中盐硝联产,分步蒸发结晶得到组分单一的元明粉和工业盐,不仅成功避免了固相盐变危废,并且分离出的单组分盐还可以作为产品销售补偿废水处理成本。
煤化工废水中主要盐分为氯化钠和硫酸钠,若通过纳滤方式,将原料废水中的氯化钠和硫酸钠进行预分离,分别得到富含氯化钠和硫酸钠的浓盐水,可以简化后续蒸发结晶工艺,易于得到纯度较高的两种盐,工艺的工业可行性大大增加,这是煤化工废水分质分盐的一个趋势,但还需要建立市场准入的盐类产品的相关标准。
3.4能源、材料的改善是实现废水“零排放”的根本保障
改善设备材料以适应黏度较大、易结垢、腐蚀性较强且组分复杂的高浓盐废水也是当今研究热点。采用的膜蒸馏-结晶工艺具有传热效率高、占地面积小、操作控制性强等优点,从膜材料出发有望攻克膜表面易结垢、易浸润、难干燥、污染严重等问题。
加强膜分离、蒸发结晶等各种工艺技术的联用,利用各类工艺取长补短,积极研发并采用综合性强、耗能最小、操作自动化、多元资源化的工艺路线,实现真正的废水“零排放”。3.5建立综合性煤化工废水处理系统煤化工废水处理工艺技术繁杂、工艺流程长、操作衔接紧密,有一单元操作出现波动和异常都会产生牵一发而动全身的效果,从而影响后序工艺效率。
此外,生产中废水流量波动较大,直接影响工艺稳定性。煤化工废水处理工艺综合性强,涉及化工、微生物、环境、水处理等多个工程领域,设备占地面积大,投资与运行成本巨大,一般中小型企业难以承担和维持。国家应鼓励大型煤化工企业、水处理企业和环保部门协同合作,加强实现技术和生产中的同步,建立有利于废水处理发展的优惠政策,创造低碳、无污染的绿色工业趋势。
4结语
从整个煤化工废水处理工艺的宏观方面考虑,高浓盐废水的处理是决定废水“零排放”的关键一环,而能耗、资源循环、变废为宝及生产经济性的联系和矛盾更是在这一环节有集中体现。抓住煤化工高浓盐废水处理的问题和不足进行优化和改善,对于整个煤化工行业乃至工业发展都具有重要意义。相信随着工业技术的进步,实现废水“零排放”指日可待。
参考文献略
《无机盐工业》作者:王彦飞,杨静,王婧莹,李亚楠,胡佳琪,沙作良
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2022 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ? 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有