NOx平衡质量浓度可按照以下步骤确定:
1)评估经喷氨优化调整后的脱硝装置潜能,据此可计算不同NOx质量浓度对应的氨逃逸量;
2)结合烟气条件,评估不同氨逃逸量对空预器堵塞的影响,定性评价空预器阻力变化情况;
3)将锅炉效率及风机电耗转换为煤耗数据;
4)按氨耗及煤耗之和最省原则确定NOx平衡质量浓度。
在NOx平衡质量浓度确定过程中,并非所有因素均能转化为经济效益进行比对,在具体项目中应根据实际情况确定各项因素的权重,对关键因素有所侧重。
1.3空预器ABS堵塞
SCR脱硝系统运行产生的氨逃逸量与SO3质量浓度增加是造成下游空预器ABS堵塞、引风机电耗增加的主要因素。ABS沉积程度可由式(1)评估。
图4为2层催化剂条件下,脱硝装置运行3个月内空预器烟气侧阻力情况,其与氨逃逸量及煤中折算含硫量相关性明显。由图4可见,空预器阻力高值多分布于高硫煤、高氨逃逸量区域。燃用低硫煤种时,空预器阻力较易控制,氨逃逸限值可适当放宽,而高硫煤种空预器阻力上升明显,需严格控制氨逃逸量。
图4空预器阻力与氨逃逸量及含硫量关系
图5为不同催化剂层数下空预器烟气侧阻力情况(运行3个月内)。针对不同的排放标准分别采用2层或3层催化剂时,空预器烟气侧阻力均值约为1400Pa;但高NOx质量浓度机组超低排放布置4层催化剂时,空预器阻力增加明显,统计均值达到1740Pa。
这一方面是由于高脱硝效率下氨逃逸量控制难度加大,另一方面4层催化剂下SO2/SO3转化率也相应升高,ρ(NH3)×ρ(SO3)增大导致空预器ABS堵塞情况相对严重。
图5空预器阻力与催化剂层数关系
图6为不同燃烧方式下空预器烟气侧阻力情况(运行3个月内)。由图6可见:旋流与切圆燃烧锅炉相比,前者空预器差压平均偏高约180Pa;旋流燃烧锅炉SCR脱硝系统入口NOx质量浓度分布均匀性较差,且不同工况分布趋势不同,使得喷氨格栅适应性较差,导致局部氨逃逸量峰值增加、空预器阻力升高;对于拱式燃烧锅炉,上述影响尤甚,且在燃用无烟煤/贫煤时NOx质量浓度偏高,高脱硝效率导致氨逃逸量较大,使得空预器阻力明显偏高。通过实例分析可以看出,降低SCR脱硝系统入口NOx质量浓度,同时提高其分布均匀性,可以减少氨逃逸量,是预防空预器ABS堵塞的有效手段。
图6空预器烟气侧差压与锅炉燃烧方式的关系
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有