1.5 其他设备积灰堵塞、磨损破损
烟气系统导流板、喷氨格栅(AIG)、均流管、飞灰整流器、空气预热器积灰堵塞、磨损破损情况如表4所示,同时空气预热器换热元件发生腐蚀。
表 4 SCR脱硝设备积灰、破损检查表
2 原因分析与诊断
烟气设备的积灰堵塞、磨损破损、导流板安装偏差等因素,均会改变流道流场分布,导致注入氨浓度分布不均、NH3/NOx混合效果差、氨逃逸增加。氨逃逸和SO2/SO3转化率增加造成催化剂堵塞失活、空气预热器腐蚀、SCR脱硝性能下降。
2.1 积灰堵塞
该煤质收到基灰分Aar、煤灰SiO2和Al2O3含量分别为41.3%、64.1%和27.1%。脱硝装置入口烟气粉尘和灰分SiO2含量高是导致烟气设备积灰堵塞的成因。分析图2可知,催化剂堵塞导致催化剂提前失 活、SCR 装置脱硝效率下降。
图 2 催化剂性能与脱硝效率
2.2 磨损破损和催化剂内裂
锅炉和SCR烟气系统设备未做灰渣清理,机组启动运行后,烟气携带残渣、金属碎片以及大颗粒粉尘流入,冲击或撞击下游设备,导致设备局部磨损破损、催化剂内裂。仅考虑导流板和飞灰整流器破损因素,经测试和流场模拟分析:
喷氨格栅(AIG)前500mm处烟道断面流速偏差不合格率3.1%;SCR反应器烟气流向射入角偏差不合格率4.8%;SCR反应器顶层催化剂入口前500mm处,流道断面流速偏差不合格率13.2%、NH3/NOx分布偏差不合格率11.5%。分析表明,导流板和飞灰整流器的破损劣化流场和NH3/NOx混合,同时飞灰整流器影响幅度较大。
2.3 导流板安装偏差
仅考虑导流板安装偏差因素,经测试和场模拟分析:喷氨格栅(AIG)前500mm处烟道断面流速偏差不合格率4.8%;SCR反应器烟气流向射入角偏差不合格6.9%;SCR反应器顶层催化剂入口前500mm处,断面流速偏差不合格率15.6%、NH3/NOx分布偏差不合格率13.2%。由此判断,导流板安装偏差超过允许值既影响烟气系统均流和NH3/NOx混合,又导致积灰堵塞、磨损破损和氨逃逸增加。
2.4 氨逃逸与流速偏差喷氨格栅(AIG)和顶层催化剂前流速偏差不合格率分别为7.5%和29.7%,依据图3分析:流速偏差超过设计值导致氨逃逸增加,同时氨逃逸量随流速偏差加大而增加。
图 3 流速偏差与氨逃逸
2.5 氨逃逸与NH3/NOx分布偏差反应器内顶层催化剂前NH3/NOx分布偏差不合格率为23.6%,依据图4分析:氨逃逸随脱硝效率升高而增加;NH3/NOx分布偏差越大,氨逃逸随脱硝效率增幅越大;脱硝效率越高,控制氨逃逸越难;NH3/NOx分布偏差超过设计指标是导致氨逃逸增加的成因,高于流速偏差的影响。
图 4 NH3/NOx分布偏差与氨逃逸
2.6 冷端设备 ABS 现象
液态硫酸氢铵(NH4HSO4)通常以液滴形式分散于SCR烟气中,其向固态((NH4)2SO4)转变阶段的温度称为转化温度。但是,转变阶段的硫酸氢铵具有极强的吸附性,会随烟气粉尘一起沉积到转化温区的冷端设备通道内,引起催化剂堵塞失活,造成空气预热器堵塞腐蚀。运行经验表明,当SO3=2~3μg/m3,NH3<2μg/m3时,硫酸氢铵附着积聚现象就会在空气预热器内发生。
图 5 转化温度、NH3·SO3与ABS
依据图5分析:ABS形成取决于转化温度、NH3·SO3浓度之积;转化温度随NH3·SO3浓度之积增加而升高;NH3·SO3浓度之积取决于氨逃逸和SO2/SO3转化率;该装置氨逃逸为8.7μg/m3、脱硝效率确定, 氨逃逸是造成催化剂堵塞和空气预热器腐蚀的主因。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有