对该300MW机组脱硝系统进行CFD数值建模及分区混合优化设计,模型范围从省煤器出口到空预器入口间烟道。除喷氨格栅、混合器采用非结构网格外,其余区域均采用结构化网格,并对关键部位加密处理。该模型网格数量为709万。表2为分区优化后满负荷下首层催化剂入口S折算值,该工况下S分布云图如图6所示。结果显示,S折算平均值为30mg/m3时,S脱硝最大值为41.7mg/m3,最小值为–0.3mg/m3。可见分区混合优化后,NOx分布均匀性较原结构提升效果显著,另外氨空混合气流量降为0.56kg/s,理论上分区混合优化后可节约32.9%的液氨耗量。
表2分区优化后满负荷下首层催化剂入口S折算值
图6分区优化后满负荷首层催化剂入口S分布云图
5改造效果
1)本文从加装氨空混合器、优化联箱母管尺寸及分区混合优化等氨空混合技术入手,通过提高喷氨均匀性,有效避免了局部NOx脱除效率过低,氨逃逸量增大的情况发生,从而降低机组的氨耗量。对某300MW机组进行分区优化改造后,在满足深度减排标准的同时氨耗量较改造前明显下降,单机平均氨耗量由66.75kg/h降至41.5kg/h,可节约37.8%,每年单台机组可节约液氨209t,节约液氨采购费68.97万元。
2)加装氨空混合器并保证一定混合距离,保证了氨与稀释风的均匀混合,避免因氨组分混合不均造成的还原剂过喷。
3)优化联箱母管尺寸,可在兼顾经济性的同时提高各喷氨支管流量的均匀性,避免因氨空混合气流量不均造成的还原剂过喷。
4)NOx采用分区混合优化技术,在各分内实现氨氮摩尔比均匀分布且接近理论值,保证NOx在高效脱除的同时所用氨量最低,避免因入口NOx分布偏差过大造成的还原剂过喷。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有