北极星

搜索历史清空

  • 水处理
您的位置:环保大气治理VOCsVOCs检测技术正文

工业有机废气热氧化技术研究进展

2017-11-15 15:07来源:化工进展作者:王波 马睿关键词:有机废气热氧化RTO收藏点赞

投稿

我要投稿

2工业有机废气热氧化系统设计的关键问题

2.1蓄热体的选用

蓄热体作为热交换器,其热工性能至关重要。蓄热体的截面积和堆积高度是最重要的两个结构参数。这两个参数的确定,需要综合考虑有机废气流量、VOCs浓度、允许的压力损失及启动、换向周期等。

蓄热体在运行中要在反复加热和冷却的工况下使用,反复的热胀冷缩对蓄热体性能提出了较高的要求。蓄热体的结构和性能参数主要包括蓄热体的形状、当量直径、比表面积、阻力系数、结构强度、堆积稳定性、耐热冲击性、透热深度、蓄热能力和传热性能等。蓄热体性能的好坏直接影响着装置的尺寸、换热效率和经济性。而在现实中,很难使所有的性能都达到最佳,因此在蓄热体的设计中要综合考虑各种因素的情况下分清主次。

2.1.1蓄热体的形状

蓄热体的外形结构是首先要考虑的。蓄热体常见的形状主要有球状、管状、大片状、矩鞍环状、蜂窝状和短圆柱状等。目前国内外工业上广泛采用的主要有球状和蜂窝状。蜂窝状蓄热体与球状蓄热体相比有以下几点优势:蜂窝体的比表面积是蓄热球的4~6倍,蓄、放热速度快;蜂窝体的通道呈直线,不易发生粉尘堵塞,压力损失小(约球状的1/3)[16]。若从蓄热体强度、更换清洗和价格方面考虑,球状蓄热体具有明显的优势。实际工程应用中,蜂窝体的壁厚一般在0.4~1.0mm之间,边长一般小于3mm。球体直径一般在11~22mm之间。

蜂窝体的通道形式有多种,常见的有圆管通道、三角形通道、方型通道和正六边形通道。不同通道形式的蜂窝体比表面积不同,传热性能也不同。传热性能好且流动阻力较小的通道结构可以改善和加速蓄热体和气体间的传热过程,从而提高热效率。对方形、圆管形和六边形通道的蜂窝体的理论分析和数值模拟结果表明,在同一特征尺寸下,方形通道的蜂窝体具有较大的比表面积可获得较好的蓄热能力,但其开孔率较小,阻力损失比六边形蜂窝体大。

2.1.2蜂窝状蓄热体的材质

蓄热体的材质影响着蓄热体的传热性能及结构强度,一般来说,选择材质时要能够使蓄热体蓄热量大,换热速度快,还要求其结构强度高、性价比高等。常用的蓄热体材质有:非金属质氧化硅、氧化铝、耐火黏土和陶瓷;金属质的有铸铁、耐热铸铁、碳钢、不锈钢和耐热钢。根据蜂窝状蓄热体蓄热和换热的工作原理,在选择蓄热体材料时应考虑的主要因素有耐热冲击性、耐热氧化性、抗震性、热导率、比热容、机械强度和堆积稳定性等。

目前,陶瓷材质蜂窝状蓄热体的应用最多。针对蜂窝陶瓷蓄热体,标准(JC/T2135—2012)给出了蜂窝陶瓷蓄热体的术语和定义、分类和标记、技术要求等。蜂窝陶瓷的材质分为刚玉-莫来石、莫来石、堇青石-莫来石、堇青石等,并分别对这几种材质的压缩强度、表观密度、热膨胀系数、抗热冲击温度、比热容等物理性能给出了详细的指标。其中,堇青石材料热膨胀系数小、具有优异的抗热震稳定性,但其耐火度不高,使用温度低,仅为1100℃。相对堇青石来说,莫来石的抗热震稳定性能稍差,但高温性能良好,不易变形,并且比热容约为堇青石的5倍,蓄热能力比堇青石质强。在实际的工程应用中,一般以堇青石、莫来石、红柱石等为主要原料,再按一定比例加入适当的添加剂,得到较好综合性能的蓄热体。

蓄热体的制备工艺对蓄热体的使用寿命、抗热震稳定性等也有着直接的影响。目前,国内外陶瓷蜂窝体基本采用生产效率高的挤出成型法,但是过程中易形成残余内应力,且使用寿命短。文献给出了两方面的改进,提出使用模挤压方法来制备蓄热体,即将已经捆好的配料在模具内靠胀压法自然成型,同时改变配料;此外,随着相变材料研究的不断发展,还可在陶瓷配料中混合一定比例的无机盐和添加剂,使用混合烧结法、自发熔融浸渍法制备蓄热体,充分利用无机盐相变蓄热的优点。

2.1.3蜂窝状蓄热体传热性能及流动阻力

蓄热体的传热性能和流动阻力特性是蓄热体性能的两个重要指标。蓄热体在系统换向周期内循环地进行吸热和放热,是包含对流、辐射和热传导多种方式的非稳态换热过程。

为了了解蓄热式热氧化系统的温度波动特性,近年来,人们对蓄热体换热过程的研究有很多,主要分为实验研究、数值模拟和理论分析三类。山东理工大学牟宝杰[20]利用蜂窝陶瓷蓄热体综合性能试验台,分别对蓄热体阻力特性和传热特性进行测试,研究了蓄热体的结构参数包括蓄热体的长度、当量直径、孔隙率、孔型等对蓄热体阻力特性的影响,及孔隙率、入口流速对传热性能的影响,此外,基于实验数据还得到了蜂窝陶瓷蓄热体摩擦阻力系数实验关联式。张志诚为研究蜂窝陶瓷蓄热体传热特性与流动阻力的试验台设计了一套能够及时、可靠地进行控制响应和数据采集的监控系统。中国石油大学郑志伟等、重庆大学高阳等针对不同规格的蜂窝陶瓷蓄热体,从传热和阻力特性两个方面进行了冷态和热态实验研究,分析了不同蓄热室高度、蓄热体形式以及空速、换向周期等蓄热室操作参数对蓄热体性能的影响,得出蓄热体尺寸和操作参数对蓄热体传热系数、阻力损失及温度效率、和热效率的规律,并给出了蓄热体传热系数、温度效率及热效率的计算公式。需要指出的是,在不同的VOCs浓度水平下,应选择不同的蓄热体高度、空速和换向周期,以达到所需要的炉内反应停留时间、反应温度和尾气排放温度,并把系统流动阻力及风机电耗控制在合理的水平。

采用数值模拟的方法研究蓄热室内的传热和流动问题也是可行的,通过数值模拟和结果分析,能够为实验研究和产品设计提供参考。目前,已有很多学者通过数值模拟的方法研究了气体和蓄热体之间的换热过程,研究的思路一般是基于多孔介质内流动和传热的基本理论,在合理假设的基础上建立典型蓄热体元件的网格模型、流动与传热问题的边界条件,利用Fluent软件进行数值模拟,分析不同蜂窝体几何尺寸、气体流速和温度下,气体对蜂窝陶瓷壁面的对流放热系数、蜂窝陶瓷的综合传热系数和气体流经蜂窝陶瓷的阻力。

在实际的废气处理过程中,挥发性有机物的化学反应使得蓄热体内部的流动和传热过程的更加复杂,其动态运行特性也是反应流体力学研究的难题之一。刘光临等将蓄热体内的温度场与流速场进行联合分析,将所有的并联微通道用一根等效换热管道表示,建立了蓄热体流动与传热的动态数学模型,并提出通道分离和预估-修正的迭代求解方法,研究了换向时间、蓄热段长度对蓄热体温度分布及排烟温度的影响。张振兴采用多孔介质模型,简化反应机理,对低浓度甲烷在蓄热体中的流动和氧化问题进行了研究。

研究在蓄热氧化炉启动加热、正常运行、保温和停机等过程中蓄热室的动态传热特性,对有机废气蓄热氧化炉的开发和应用有重要意义。

2.2蓄热式催化氧化技术处理工业有机废气所用催化剂

2.2.1催化剂的种类

在蓄热式催化氧化中,催化剂的作用是提高反应速率、降低反应温度、缩小反应器的体积。目前,国内外催化氧化法所用的催化剂主要有以下几个系列:贵金属型催化剂,如Pd、Pt、Ru等,其中Ru的催化活性最高;过渡金属氧化物型催化剂,如Cu、Mn、Co的氧化物;分子筛催化剂,如ZSM-5、丝光沸石等;此外还有目前催化领域研究热点之一的金属复合型催化剂,如Cu、Co、Mn复合氧化物等。

目前,用来处理工业VOCs的催化剂以贵金属催化剂为主,贵金属催化剂催化活性最高,但因价格昂贵,人们又开发了一些过渡金属氧化物催化剂来处理部分工业废气,这类催化剂的催化活性在一定条件下和贵金属的催化活性相近。近年来复合氧化物催化剂也成为研究热点,也实验证实了该类催化剂催化效果较好,有广阔的应用前景。

2.2.2载体的选择

对于负载型贵金属催化剂,载体的作用是承载活性组分、增大表面积,载体选择对催化反应的效果有重要影响。对载体的选择有以下几点要求:应能够提供较大的表面积和孔结构;具有良好的机械强度、耐热稳定性和化学稳定性;不含使催化剂中毒和导致副反应的物质;原料易得,制备简单,价格便宜。

载体大致分为三类:金属氧化物载体,如Al2O3、CeO2和TiO2;分子筛载体,如NaY和CuY;其他特殊载体,如采用气溶胶碳板作为Pt的载体。ZAITAN等[33]研究了疏水性合成沸石ZSM-5作为甲苯去除吸附剂和催化剂,指出甲苯吸附在ZSM-5上有利于甲苯的催化氧化。以γ-Al2O3和SiO2为载体制备的负载型催化剂,对甲苯和二甲苯也有较好的去除效果。

2.2.3活性组分的选择

催化剂中的活性组分是催化氧化反应中最关键的部分。对不同类别的活性组分的优缺点如表1所示。

2.2.4催化剂的制备方法

如何选择适当的方法将活性组分负载于载体之上,是制备高效、高性能催化剂的重要环节。恰当的负载方法可以使活性组分、活性组分与载体之间的黏结性均增强。此外,为了简化工艺流程,负载方法还需要操作简单。催化剂的制备方法有很多,用于处理工业有机废气的催化剂的制备方法主要有共沉淀法和浸渍法等。

共沉淀法是制备还有两种或两种以上金属复合氧化物超细粉末的常用方法,即可将不同化学成分的物质混合,加入沉淀剂制备前体沉淀物。CASTANO等采用共沉淀法制备Co-Mn混合氧化物催化剂,证明了两种金属氧化物之间在该方法中存在协同作用,氧化还原性强,有利于VOCs的氧化。近年来,自动燃烧合成方法制备催化剂也引起了人们的关注,该方法的优异性在于良好的结构特性和在短时间内在最终的氧化物中获得活性相优异的分散性,适合制备单一金属氧化物催化剂。

浸渍法有湿浸渍法和固相浸渍法两种。张鹏以γ-Al2O3和SiO2为载体,Cu和Ce为活性组分,用湿浸渍法,即将载体放入到含活性组分的硝酸盐水溶液中经混合、搅拌、浸渍、烘干、焙烧等过制备出一系列负载型催化剂来去除甲苯。该方法工艺流程简单,负载组分一般分布在载体表面,利用率高、用量少且成本低。固体浸渍法,即无溶剂法,利用该技术合成的一系列铜氧化铈催化剂用于氧化一氧化碳反应时,表明比湿浸渍法制备的催化活性更高、节能。

此外,还有溶胶-凝胶法、柠檬酸低温固相法、微乳液法等。

2.2.5催化剂的寿命

催化剂使用寿命的长短直接影响着运营投资费用的高低。系统运行、维护的不合理将导致催化剂提前失效,表现形式包括:废气中化学物质与催化剂活性组分发生反应造成的催化剂中毒、持续高温下造成的表面烧结、废气中的小颗粒杂质堆积造成的催化剂微孔堵塞等。因此,在催化剂的生产、运输及使用过程都进行严格控制,在生产中可根据实际需要添加合适的成分来提高催化剂的抗中毒能力,运输、储存及使用时尽可能保持催化剂的干燥,此外还要优化系统流场,选择合理的空速,尽量减少对催化剂表面的冲击。

原标题:工业有机废气热氧化技术研究进展
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。