北极星

搜索历史清空

  • 水处理
您的位置:环保大气治理脱硫脱硝烟气脱硝技术正文

湿法烟气脱硝技术现状及发展

2017-12-14 11:11来源:《化工进展》作者:杨加强 梅毅等关键词:脱硝技术湿法脱硝烟气脱硝收藏点赞

投稿

我要投稿

2.6氧化吸收法

氧化吸收法是利用氧化剂将NO氧化为易溶于水的NO2再吸收脱除的一种方法。用于氧化NO的氧化剂大致可分为气相氧化剂和液相氧化剂两类,气相氧化剂主要有O3、Cl2、ClO2等;液相氧化剂主要有KMnO4、NaClO2、NaClO、H2O2、KBrO3、K2CrO7、HClO3、Na2CrO4等[20]。

2.6.1NaClO2和NaClO氧化法

NaClO2具有强氧化性,其溶液可将NO氧化为NO2并吸收得到硝酸钠。采用NaClO2脱硝简单易行,NO脱除率高。LEE等[21]采用湿壁塔进行了研究,发现通过增加NaClO2进料速度可明显提高脱硝效率。此外,NaClO2粉末也可作为脱硝氧化剂,而且气相中的SO2可以促进NaClO2对NO的脱除效果,HUTSON等[22]采用了NaClO2粉末来增强湿式洗涤器对燃煤烟气氧化吸收,BYUN等[23]利用填充床反应器研究了NaClO2粉末同时脱硫脱硝脱汞工艺,均证实SO2的加入提高了NaClO2对NO的脱除效率。BYUN等[23]认为SO2与NaClO2反应会生成多种气态氯化物(OClO、ClO、Cl和Cl2),这些气态氯化物促进了NO的氧化。同NaClO2类似,NaClO也常被用于烟气脱硝反应[24-25],MONDAL等[26]在带磁力搅拌的反应器中对NaClO溶液吸收模拟烟气中的NO进行了实验,通过调节实验参数,NO的最大脱除率可以达到92%。但NaClO2和NaClO氧化法对设备耐腐蚀性要求较高,氧化剂价格相对较贵,制约了其在工业上的应用。

2.6.2H2O2氧化法

佛罗里达大学[27]最先开展了H2O2脱硝的研究结果表明NO先被氧化成了NO2,随后NO2再被氧化形成HNO2和HNO3而被脱除。H2O2性能优良,在脱硝技术的研究中使用较多,除可单独用于脱硝外,还常和其他技术互补使用。高温或紫外光存在的环境能增强H2O2氧化NO的效果,可迅速将NO氧化为易溶于水的NO2[28]。

LIU等[29]将紫外照射和H2O2结合用于同时脱硫脱硝,脱硫率和脱硝率均可达到90%以上。DING等[30]将H2O2催化氧化与喷氨洗涤结合开发出了新型脱硫脱硝一体化工艺。ZHAO等[31]设计了一个新的同时脱硫脱硝工艺流程,先由H2O2、FeSO4和PAA[聚丙烯酸,对水中的CaCO3和Ca(OH)2有优良的分解作用]制备出强化的芬顿试剂,再结合Ca(OH)2吸收,SO2和NO的脱除率分别可达到100%和89.2%。

H2O2是一种绿色的氧化剂,无二次污染,价格相对低廉,能达到较高的脱硝率,近年研究成果较多,但由于H2O2具有性质不稳定、受热易分解、装置运行不稳定、氧化剂消耗大等缺点,制约了其大规模的工业应用。

2.6.3O3氧化法

O3是最早被研究的氧化剂之一,目前已取得了一系列的成果并成功在工业上得到应用。O3具有很强的氧化性,与烟气接触过程中一秒就可以将NO氧化为溶解度较高的NO2、N2O3和N2O5等。王智化等[32]对O3氧化脱硝进行了研究,结果表明,当O3/NO摩尔比为0.9时脱硝效率可达到86.27%,还可同步脱除SO2和HgO,通过优化条件,NO脱除率最高可达到97%。

O3氧化结合碱液吸收是目前O3应用于脱硝技术的主要途径,该方法可同时脱硫脱硝,具有投资低、工艺流程简单、脱除率高等优点,是湿法脱硝领域的热点之一。美国的BOC公司开发了一种名为LoTOx的低温氧化技术,其原理是将氧气和O3的混合气通入烟道中,利用O3的强氧化性将NO氧化为易溶于水的高价态氮氧化物,再用碱液洗涤脱除,脱硝率可达70%~95%[33]。BELCO公司将LoTOx与自己研发的EDV(Electro-DynamicVenturei)洗涤系统进行了结合优化,开发出了一种一体化脱硫脱硝系统,其工作原理是NO被O3氧化生成的N2O5在EDV洗涤器内和烟气中的水分结合生成HNO3,再进一步同洗涤剂反应生成盐类清理排出。LoTOx-EDV系统可使NOx排放含量低于10μg/g,满足了日益严格的排放标准,而且在相同脱硝效果的条件下,其投资仅为SCR系统的75%[33],是一种应用前景广阔的脱硫脱硝技术。目前LoTOx技术在国外已经进入工业应用阶段,但由于O3的制备费用较高、耗资大,推广面窄。

近几年,关于O3氧化结合碱液吸收的新技术越来越多,MING等[34]开展了O3氧化与NaOH溶液吸收耦合的同时脱硫脱硝技术研究;SUN等[35]利用碱性的氧化镁浆料作为吸收剂,研究了O3氧化协同氧化镁浆液吸收的同时脱硫脱硝新工艺。O3可以很好地的和不同吸收剂及其他技术协调使用,拥有很强的使用灵活性,这为其应用推广提供了便利,O3氧化法应用的关键在于如何降低O3的制取成本。O3和其他氧化剂的性能对比见表1。

2.6.4黄磷乳浊液氧化法

市场上常用脉冲电晕法或电解法臭氧发生器来制备O3,能耗较高,美国劳伦斯伯克利国家实验室利用相对廉价的黄磷作为O3发生剂,开发出了能同时去除NOx和SO2的PhoSNOX[36]技术。该技术的原理是含碱的黄磷乳浊液喷射到烟道气中使其与气流逆流接触,经过气体的撞击,被分散成小液滴的黄磷乳浊液与烟气中氧气发生氧化反应生成O3和活性氧原子(O),O3和O能将NO氧化为易溶于水的NO2,最后通过碱液吸收将NOx和SO2转化为盐类和石膏除去。国际热能公司利用此原理开发出了Thermalonox技术,该技术2001年首次应用于美国电力公司的一台375MW燃煤电厂锅炉脱硝,NOx去除率为75%~90%。同SCR法相比,该法具有明显的优势,其投资费用仅是SCR的35%,除去1tNOx所需费用仅是SCR法的25%左右,维修时间也大为缩短。

2.7脱硝新技术及其在湿法脱硝中的应用

大气污染的治理需求推动了脱硝技术的进步新型脱硝技术不断涌现,其中以光催化法和电环境技术最为典型,发展迅速,二者常和湿法脱硝技术联合使用,是湿法脱硝耦合的重要方向,联用技术的开发与创新为湿法脱硝技术的发展带来了新思路。

2.7.1光催化法

光催化法是近十几年发展起来的一种新型污染物处理工艺,其脱除NOx的研究分为光催化还原和光催化氧化两类。光催化还原是在光催化剂的作用下,借助氨、甲醇等还原剂,使NOx发生还原反应转化为N2和O2除去,其缺点是需消耗还原剂,且氨等还原剂的使用存在安全、腐蚀设备及易造成二次污染等问题。光催化氧化的原理是用一定强度的光照射半导体催化剂,激发半导体材料上的价带电子发生跃迁进入导带,同时价带产生空穴,导带电子、价带空穴分别具有很强的还原性和氧化性,当它们和烟气接触时,吸附在催化剂表面的O2、H2O、NOx等会在催化剂的作用下产生活性自由基,进而发生催化氧化反应将NOx转化为NO3–脱除,由于其不需使用还原剂,工艺简单,成本低廉,是目前光催化技术研究的重点。可用于光催化氧化的催化剂主要为金属氧化物、硫化物等半导体材料,TiO2具有光化学稳定、催化活性高和价格低等优点,是光催化反应中最常用的催化材料,但其禁带宽,只能吸收波长小于387nm的紫外光,常用紫外光激发(波长300~400nm,占地面太阳光能的4%~6%),而且光生载流子复合概率较高,这些因素限制了其在工业上的应用[38]。为了改进光催化剂的性能,许多学者对其做了改性研究,目前关于TiO2的改性主要有贵金属沉积、金属离子掺杂、非金属元素掺杂、半导体复合以及光敏化等途径,其中金属离子掺杂又包括过渡金属离子、稀土金属离子等。文献[39]表明掺杂过渡金属是一种可有效改善TiO2光催化活性的方法,Mn、Fe等过渡金属离子的掺杂可使激发波长扩展到可见光区。李春虎等[40]以活化半焦为载体,通过掺杂还原氧化石墨烯(rGO)对TiO2进行改性,利用热浸渍法制备了新型负载型光催化剂(rGO-TiO2/ASC),有效地解决了TiO2光生电子和空穴快速复合的问题。SU等[41]利用TiO2纳米粒子成功制备出了可同时脱硫脱硝的TiO2-PAN(聚丙烯腈)催化剂。除了对TiO2的改性,越来越多的非依托TiO2的新型光催化剂也得到了开发。XIONG等[42]通过非金属掺杂和非贵金属沉积利用水热法制备出了可吸收可见光的N-doped(BiO)2CO3光催化剂。李瞳等[43]以氧化石墨烯为载体,通过水热法制备出了氧化石墨烯-Fe2O3复合材料脱硝光催化剂。近些年,关于光催化氧化与湿法脱硝耦合技术的研究发展迅速,取得了许多成果。李瞳等利用H2O2在可见光照射及氧化石墨烯-Fe2O3催化条件下产生的羟基自由基,将烟气中的NO氧化为NO2吸收脱除,NOx转化率可达84.33%。LIU等以TiO2溶胶作为催化剂,搭建了光催化氧化和湿式洗涤结合的同时脱硫脱硝系统。黎宝仁等[45]采用溶胶-凝胶法以聚砜(PSF)中空纤维膜为载体制备了Fe-TiO2/PSF复合催化膜,构建了新型复合催化膜生物反应器(HCMBR),实现了光催化氧化与湿法微生物法耦合烟气脱硝,提高了微生物法脱硝的能力。

光催化氧化技术反应条件温和、能耗低、无二次污染、可同时脱硫脱硝,且能很好地融合到湿法脱硝技术中,是改进和优化湿法脱硝工艺的有效措施,其关键在于光催化剂的研制,拓宽TiO2的响应范围,提高其光能利用率,提高脱硝效率。该技术目前仍处于实验室研究阶段,工业使用有待时日。

原标题:湿法烟气脱硝技术现状及发展
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

脱硝技术查看更多>湿法脱硝查看更多>烟气脱硝查看更多>