北极星

搜索历史清空

  • 水处理
您的位置:环保大气治理脱硫脱硝烟气脱硝技术正文

燃煤电厂SCR烟气脱硝催化剂寿命预测研究

2019-04-02 09:13来源:《热力发电》作者:唐诗洁 陆强等关键词:烟气脱硝SCR催化剂脱硝催化剂收藏点赞

投稿

我要投稿

2.4灰色神经网络

灰色预测模型的对象系统中允许存在未知项,所需数据少,并且不要求数据具有一致性,但它缺乏自学习、自适应能力,对非线性信息的处理能力较弱,而BP神经网络算法恰好可以弥补灰色预测模型的这些不足。本文将灰色预测模型与BP神经网络结合在一起,形成灰色神经网络,尤其适合处理SCR催化剂失效这种多因素耦合、繁复的问题。按照神经网络的输出数据类别,可将灰色神经网络模型分为残差输出和直接输出2类。

2.4.1残差模型

灰色神经网络中的残差修正模型首先将原始数据通过灰色预测方法预测,随后将灰色预测结果的残差作为BP神经网络的输入输出,从而达到自身修正、降低误差的目的。

2.4.2直接输出模型

灰色神经网络直接输出模型首先将原始数据用灰色预测方法预测,随后把灰色预测的结果与SCR催化剂服役时间同时作为BP神经网络的输入,最后得到网络输出即SCR催化剂活性预测值。

3工程实例分析

3.1曲线拟合

随着运行时间的延长,SCR催化剂活性会逐渐降低,因此使用曲线拟合法预测时,将时间作为自变量,SCR催化剂活性则为因变量。用MATLAB软件中的cftool工具箱直接对样本数据进行曲线拟合。以电厂1为例,在进行数据预处理后共得到51组数据,取1—46组数据作为样本数据,拟合得到SCR催化剂活性变化公式,然后将47—51组数据作为测试数据,代入式(1)得到SCR催化剂活性拟合值,并与SCR催化剂活性真实值进行对比,结果见表1、表2

3.2灰色预测

预处理后的电厂1数据满足等时距特性,此时可以使用GM(1,1)模型进行预测,取1—46组数据作为样本数据,将47—51组数据作为测试数据,结果见表3。由表3预测结果显示,曲线拟合和灰色预测模型的预测精度较低,平均误差高达39.1183%。因此,使用单一的曲线拟合或灰色预测模型往往无法反映催化剂活性与各影响因素间复杂的非线性关系。

3.3BP神经网络

以电厂1为例,经过SPSS软件分析可知,机组负荷、脱硝效率、烟温、烟气量、时间、FGD(烟气脱硫)出口NOx质量浓度、喷氨量、煤中硫、砷质量浓度都与SCR催化剂活性显著相关,因此将这些影响因素作为BP神经网络的输入并进行归一化处理,SCR催化剂活性作为BP神经网络的输出。

经过计算比较后发现,当BP神经网络中隐含层神经元为4时预测误差最小,因此BP神经网络拓扑结构为9-4-1(输入层神经元数-隐含层神经元数-输出层神经元数)。取1—46组数据作为样本数据,将47—51组数据作为测试数据,BP神经网络的预测结果与误差见表4,其平均误差为17.1534%。

3.4灰色神经网络

3.4.1残差模型

经过计算比较后发现,当灰色神经网络残差模型拓扑结构为3-6-1时预测误差最小。取1—46组数据作为样本数据,将47—51组数据作为测试数据,灰色神经网络残差模型3-6-1结构SCR催化剂活性预测结果与误差见表5,其平均误差为30.3738%。

3.4.2直接输出模型

计算比较后发现当灰色神经网络直接输出模型拓扑结构为2-5-1时误差最小。取1—46组数据作为样本数据,将47—51组数据作为测试数据,灰色神经网络直接输出模型2-5-1结构预测结果与误差见表6,其平均误差为32.6349%。

为了进一步降低误差,将SCR催化剂活性影响因素也作为灰色神经网络直接输出模型的输入变量对模型进行优化。即输入变量包括灰色预测残差和机组负荷、脱硝效率、烟温、烟气量、时间、FGD出口NOx质量浓度、喷氨量、煤中硫质量浓度、砷质量浓度。经过计算比较后发现当灰色神经网络直接输出模型拓扑结构为10-2-1时误差最小。取1—46组数据作为样本数据,将47—51组数据作为测试数据,预测结果与误差见表7,其平均误差为15.3916%。

3.5不同预测方法分析比较

上述预测模型计算结果见表8,对比可知灰色神经网络中优化后的直接输出模型预测误差最小。为了进一步验证该结论,本文对在役电厂2、3、4、5的数据进行预处理后用同样的方法进行预测,比较其预测误差,结果见表9。分析表9发现,灰色神经网络中优化后直接输出模型的SCR催化剂活性误差最小。因此,在燃煤电厂实际运行过程中,当数据满足等时距特性时,可将灰色神经网络中的直接输出模型(优化后)作为SCR催化剂的寿命预测模型。

3.6预测方法优化

在采用上述几种同样的模型进行SCR催化剂活性预测时,电厂1的预测误差最大。为了降低其预测误差,将数据预处理改为由烟气量作为标准对数据进行筛选的方法。电厂1的原始数据中烟气量变化范围为527.8~1564.5km3/h(标准状态,下同),以烟气量在1000~1021km3/h范围内为标准,筛选后共得到70组数据。这些数据样本不再具有等时距特性,不满足灰色神经网络预测模型的使用条件,故使用BP神经网络进行预测。将1—65组数据作为训练样本,66—70组作为预测样本,BP神经网络SCR催化剂活性预测结果与误差见表10。

比较表8和表10,以烟气量为标准进行筛选后使用BP神经网络预测的误差显著降低,改进后的平均误差仅为2.1819%。

4结论

1)针对燃煤电厂实际运行数据十分繁杂的特点,首先对数据进行预处理,然后使用曲线拟合、灰色预测、BP神经网络、灰色神经网络4种模型进行SCR催化剂活性预测。比较发现,当数据满足等时距特性时,灰色神经网络直接输出模型(优化后)的预测误差最小,准确度更高。

2)对于烟气参数尤其是烟气量波动较大的在役电厂,先以烟气量为标准对数据进行筛选,再使用BP神经网络预测方法,这样可进一步降低SCR催化剂活性预测误差,提高预测精度。

原标题:燃煤电厂SCR烟气脱硝催化剂寿命预测研究
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

烟气脱硝查看更多>SCR催化剂查看更多>脱硝催化剂查看更多>