北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复土壤修复技术正文

原位电热脱附技术在某有机污染场地修复中的应用效果

2020-05-08 11:09来源:北京建工修复关键词:原位修复电热脱附有机污染场地收藏点赞

投稿

我要投稿

2.3.2 实验区地下水中目标污染物含量变化

由表4可知,实验前地下水中检出目标污染物分别为氯乙烯、顺-1,2-二氯乙烯、苯、氯苯等 4种。W01采样点氯乙烯、苯、氯苯浓度最高,分别为3.79×103、1.06×103、2.34×104 μg·kg−1;W03采样点顺-1,2-二氯乙烯浓度最高,为3.35×103 μg·kg−1。实验18周后再次采样发现,地下水中 目标污染物含量均表现为下降。W01采样点4种目标污染物氯乙烯、顺-1,2-二氯乙烯、苯、氯苯检出浓度最高,分别为417、198、37.2、101 μg·kg−1。通过计算去除率可知,地下水中氯乙 烯、顺-1,2-二氯乙烯、苯、氯苯的平均去除率 分别为90.5%、93.5%、96.4%、99.3%。进一步 对比DB11/T 1278-2015[23]地下水(居住)中规定 的氯乙烯、顺-1,2-二氯乙烯、苯、氯苯的筛选 值,其值分别为20、70、10、300 μg·kg−1。由 此可知,实验期内虽未完全达到筛选值标准, 但地下水中污染物大部分已挥发出来并被有效 抽提,处理效果尚好。因此,在该技术实际工 程应用中为实现达标,可考虑增加热脱附停留时间。

3 影响因素分析

电热脱附技术的成功应用取决于加热温 度、停留时间、土壤含水率和土壤孔隙率等影 响因素。在本研究中,结合加热升温过程、污 染物去除率等研究结果对各影响因素进行了逐 一分析与讨论。

3.1 热脱附温度

由实验前后区域污染物含量变化可知,加热温度是影响原位热脱附效果的主要因素[24-26]。HERON等[27]研究表明,利用电热脱附技术处理三氯乙烯污染土壤,在23 ℃条件下,脱附效果很 差且处理周期持续1年之久;但在100 ℃条件下,仅需37 d,去除率即可达到99.8%;加热区域温 度越高,热脱附效果也就越好。实验区内土壤及地下水中目标污染物包括氯乙烯、顺-1,2-二氯乙 烯、苯、氯苯,沸点分别为-13.9、60.0、80.1、131.7 ℃。加热进行2周后,仅加热井附近温度较 高,TCH-A分区中0.5 m处升至100 ℃以上,TCH-B分区中0.5 m处温度升至60 ℃以上。此时, 区域内氯乙烯、顺-1,2-二氯乙烯等低沸点的有机污染物开始逐渐向气相转化。加热进行7周后,整 个区域温度均升至80 ℃以上,TCH-A分区平均温度升至100 ℃以上,TCH-B分区平均温度升至 80 ℃以上。此时区域内苯、氯苯等高沸点的有机污染物开始大量向气相转化。从土壤中目标污染 物含量的变化可以看出,氯乙烯去除完全时,氯苯还有少量残留。这是由于氯苯从土壤中脱附所 需的温度更高,开始向气相转化的时间点相对滞后。综上所述,加热目标温度可直接影响污染物 的去除效果。当然,为最终确定适合场地污染特征的最佳加热目标温度,同时也需综合考虑能耗及工期。

3.2 热脱附停留时间

由实验前后各区域污染物含量变化可知,加热至目标温度后,持续热脱附停留时间同样是影 响热脱附效果的关键因素。在热脱附处理加热升温前期,温度起主导作用;而在温度相对稳定的 中后期,时间则是主要影响因素。张攀等研究表明,在300 ℃条件下热脱附硝基苯,加热30 min, 脱附效率为86.93%;维持温度20 min后,脱附效率为91.03%;加热至目标温度后的持续时间越 长,热脱附效果越好。在本研究中,加热7周后,继续加热,维持该温度持续1周,土壤及地下 水中目标污染物的去除效果均较为理想。其中,土壤中氯乙烯全部去除,氯苯平均去除率达到 99%;地下水中氯乙烯、顺-1,2-二氯乙烯、苯、氯苯的平均去除率分别为90.5%、93.5%、96.4%、 99.3%。但实验中各区域内仍有少量污染物残留,这可能是由于维持高温阶段持续时间短。若将加热至目标温度后持续停留时间再延长,则污染物去除率可能会进一步提升。因此,在原位热脱附 实际应用时,须结合加热温度与热脱附停留时间2个重要影响因素,综合考虑材料、能耗、工期 等因素,通过实验获得最佳的搭配方式。

3.3 土壤含水率

土壤含水率的高低直接影响着热脱附效率和工程成本。孙磊等[29]的研究表明,较低或较高的 土壤含水率会降低五氯酚在土壤中的热脱附效率。对于电热脱附技术而言,较高的土壤含水率, 土壤热容量高,升温至目标温度需要花费更长的时间,消耗更多的能源。因此,为提高升温效 率,缩短工期,在加热开始前,须尽可能地对止水帷幕内的区域采取工程降排水措施。在加热升 温过程中,利用多相抽提井也可抽提出一部分水量。对于干土,其导热系数、导温系数更小,可 能会减小土壤热传导的效率。但对于本场地条件而言,因加热目标温度在100~110 ℃即可去除绝 大多数污染物,不会出现更高的温度,故修复完成后各区域内仍然有一定量的土壤水,不会出现 干土的工况。因此,本研究暂不对干土的工况展开讨论。

3.4 土壤渗透性

土壤渗透性的高低影响着有机污染物的抽提效率。尽管原位热脱附技术对于土壤渗透性低的 污染地块仍然适用,但对于渗透性较好的土壤,经电热脱附后,土壤气相中的VOCs、SVOCs更容 易被抽提,去除率更高。高国龙等的研究表明,对于土壤结构紧实或黏性较大的土壤,热 脱附效率较低。本实验场地3~7 m以砂质粉土为主,属于潜水含水层;7~10 m为粉质黏土、淤泥 质粉质黏土层。污染物主要分布在含水层的中下部以及隔水层的顶部,因此,在设计加热、抽提 深度时,须覆盖污染在地层中的主要分布位置。

综上所述,应用电热脱附技术去除土壤中有机污染物须综合考虑加热目标温度、热脱附停留 时间、土壤含水率、土壤渗透性等影响因素。加热目标温度越高,热脱附停留时间越长,热脱附 效果越好;土壤含水率较低、渗透性较好的土壤热脱附效果也更好。此外,为防止修复过程中产 生二次污染,对于抽提废气的有效收集和无害化处理也是至关重要的,应遵循“先启抽提、后启 加热,先关加热、后关抽提”的运行原则。

4 结论

1) 不同加热间距,相应的实验分区升温效果不同。加热间距为3.0 m,分区升温时间短,其均 匀升温效果优于加热间距为4.0 m的分区,但2种间距布设方式均可达到去除区域污染的最终目标。

2) 实验期内,加热边界热传递有效范围在2.0 m左右。针对本场地,可保守考虑,将止水帷幕 设置在距离加热边界3.0 m及更远的位置。

3) 电热脱附原位修复技术对实验区内土壤及地下水中目标污染物去除效果良好。土壤中目标 污染物氯乙烯、氯苯平均去除率为100%、99%;地下水中目标污染物氯乙烯、顺-1,2-二氯乙烯、 苯、氯苯的平均去除率分别为90.5%、93.5%、96.4%、99.3%。

4) 电热脱附原位修复技术主要受加热目标温度、热脱附停留时间的影响,土壤含水率、土壤 渗透性等因素也影响着热脱附效果。加热目标温度越高,热脱附停留时间越长,热脱附效果越 好;对于含水率较低且渗透性较好的土壤,热脱附效果也更好。

5) 电热脱附原位修复技术处理氯代烃类有机物污染场地效果良好,能够进行大规模的实际应 用。在工程设计时,须综合考虑污染特征、地质及水文地质条件、材料投入、能耗成本、施工工 期等因素,通过计算寻找最佳的搭配方式。

原标题:智享汇丨原位电热脱附技术在某有机污染场地修复中的应用效果
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

原位修复查看更多>电热脱附查看更多>有机污染场地查看更多>