登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
纺织印染废水具有水质水量变化大、有机物浓度高、色度高、pH 高及可生化性差等特点,属难降解的工业废水,被公认为最难治理的废水之一。国内目前执行的是GB 4287—1992《纺织染整工业水污染物排放标准》,而江苏省地处太湖流域,执行的是DB 32/1072—2007《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》的地方标准。与GB 4287—1992 相比,DB 32/1072—2007 对印染废水的部分排放指标限制更加严格,如COD、氨氮由GB 4287—1992 一级的100、15 mg/L 分别提高到 60、5 mg/L,同时加强了对TN 和TP 的控制。因此要求选用的处理工艺对有机碳和氨氮都具有较好的处理效果。
生物脱氮工艺如A/O 被认为是目前废水脱氮处理最经济有效的方法之一。然而,传统A/O 工艺中硝化后的回流污泥首先回流到反硝化池(A 池),再进入硝化池(O 池),导致A 段和O 段的污泥类型极为相似,硝化菌和反硝化菌难以彻底分开,且回流到A 段的回流液含有大量溶解氧,也会对反硝化脱氮带来不利影响,反硝化脱氮效率难以超过70%。
为了解决上述问题,笔者采用将硝化液的内循环改为由沉淀池回流到A 池,污泥由原回流到A 池改为回流到O 池;并采用具有自主知识产权的新型一体化A/O 生物膜反应器,在宏观环境上实现A 池与O 池内不同的DO 浓度和各自所需的优势菌种,有望使硝化和反硝化过程分别在不同反应器内同时且高效地发生。针对印染废水的水质特点及对氨氮的排放要求,以自配的印染废水为处理对象,深入研究了一体化A/O 反应器的启动过程,以探讨该工艺对有机碳和氨氮的脱除效果。
1 试验材料与方法
1.1 试验装置
一体化A/O 装置由底部的A 池和顶部的O 池组成,见图 1。为便于加工,装置采用方形锥体式结构,尺寸为500 mm×500 mm。A 池高350 mm,有效容积20 L,O 池高600 mm,有效容积为60 L。A 池采用添加火山岩的球形悬浮填料作微生物载体,O 池同时填充组合填料和火山岩的球形悬浮填料。A/O 后续的沉淀池有效容积12 L。
图 1 试验装置
印染废水由混凝沉淀和水解酸化预处理后储存在废水池中,然后通过提升泵进入A 池,降解部分有机物和氨氮,进水量通过流量计控制。A 池出水自下而上进入O 池,在降解大部分有机物的同时,出水进入环形沉淀池内进行泥水分离。分离后的上清液一部分回流至A 池内作为反硝化脱氮的氮源,另一部分则作为最终出水排放。沉淀区的污泥受自身重力作用会沿着污泥回流区下方的回流缝回到O 池内,重新参与降解过程。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,上海市政总院承担武汉左岭污水处理厂二厂及配套设施新建工程设计工作,项目规划总规模20万吨/日,总占地面积16.06公顷,一期工程6.5万吨/日,占地面积8.44公顷。项目建成后将显著缓解武汉新城左岭片区工业污水处理压力,为长江生态保护提供关键支撑。创新工艺突破技术瓶颈针对武汉新城左岭片区电
5月9日,由中国能建西北院总承包的国家首批“沙戈荒”项目——三峡能源青海格尔木100兆瓦光热项目带负荷连续稳定运行6小时,满足全系统投运发电条件。三峡能源格尔木100兆瓦光热项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔式熔盐技术路线,镜场总采光面积约74.755万平
近日,中国能建中电工程西北院总承包的国家首批“沙、戈、荒”项目三峡能源青海格尔木100MW光热项目带负荷连续稳定运行6小时实现全系统投运发电,为海西光伏光热基地构建“光伏#x2B;光热”一体化清洁能源体系提供了重要支撑项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔
国内有机废水治理资源化处理技术迎来重要突破,安顺水淼环保科技有限公司(以下简称“水淼环保”)近日宣布完成千万级战略融资,由华盛人和资本独家投资,龙铃资本担任本轮独家财务顾问。据悉,本轮资金将重点投入新一代有机废水处理耦合生物制造设备的量产线建设及全国园区服务网络布局,推动工业废水
在“双碳”战略重塑全球工业格局的背景下,蒸发结晶圈龙头“抱团”齐聚,全方位呈现蒸发与结晶技术设备产业链前沿成果,汇聚世界500强、央企、大型上市公司,还有国家制造业单项冠军示范企业、国家级专精特新“小巨人”企业、中国科技创新型中小企业100强、国家高新技术企业……蒸发结晶圈智能化、节能
4月29日,河北行唐县玉城污水处理厂特许经营项目招标计划发布。行唐县玉城污水处理厂设计生产规模:污水处理5万m3/d。本项目招标范围为行唐县玉城污水处理厂运营维护服务(包括交纳特许经营权转让费,以及运营、维护、期满移交等工作),并获得污水处理服务费收入。服务范围为:行唐县城区的生活污水及县
北极星水处理网获悉,4月27日,太湖县公共资源交易中心发布《太湖县功能膜新材料县域特色产业集群污水处理厂及配套管网项目设计》中标结果公示,中标人为上海市政工程设计研究总院(集团)有限公司。详情如下:据悉,安徽太湖经济开发区位于县城东部,规划总面积761.30公顷。本项目位于安徽太湖经济开
北极星环保网获悉,4月27日,深圳市工业和信息化局发布《市工业和信息化局关于征集2025年国家鼓励发展的重大环保技术装备的通知》,申报范围包含大气、水、土壤修复、固废处理、减污降碳协同处置等技术装备。技术类别分为研发、应用、推广类。详情如下:市工业和信息化局关于征集2025年国家鼓励发展的
4月21日,南京国家农高区工业废水处理中心建设工程设计中标候选人公示发布,拟定中标人为中机国际工程设计研究院有限责任公司,投标价格为1830000元。详情如下:标段编号:LSSZ2500471-01SJGH根据工程招标投标的有关法律、法规、规章和该项目招标文件的规定,江苏南京国家农业高新技术产业示范区发展集
日前,山西生态环境厅对国能山西河曲发电有限公司三期2×660MW煤电一体化扩建项目环评拟作出审批意见公示。国能山西河曲发电有限公司三期2×660MW煤电一体化扩建项位于忻州市河曲县西口镇,本次三期工程利用电厂二期工程北侧预留建设场地,建设2×660MW超超临界空冷凝气式汽轮发电机组,配套2×2100t/h
4月15日,工业和信息化部、生态环境部近日组织开展2025年国家鼓励发展的重大环保技术装备推荐工作。将聚焦工业领域持续深入打好污染防治攻坚战和国家生态环境保护主要指标要求,强化创新驱动,突破环保装备关键核心技术工艺以及配套零部件、材料、药剂等领域的技术瓶颈,加强先进适用环保装备在冶金、
在脱氮工艺中氨氮转化成氮气有很多的途径,也存在很多难以控制的中间过程及中间产物,恰恰是这些难控制的中间过程决定了最新的脱氮工艺的研究方向,本文将介绍一下短程硝化及短程反硝化的内容!什么是短程硝化?废水生物脱氮,一般由硝化和反硝化两个过程完成,而硝化过程分为氨氧化阶段和亚硝酸盐氧化
北京排水集团建设的国际上第一座城市污水厌氧氨氧化项目日前通过技术成果鉴定。作为北京市重大科技项目,该项目是国际上率先建成并成功运行的一座典型的城市污水厌氧氨氧化示范工程,研究成果达到国际领先水平。据悉,该项目设计规模为7200立方米/天,自2019年投入运行后,经过3个冬季低温期考验,成功
文章导读厌氧氨氧化工艺因其高效、低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际工程应用方面已取得突破性进展,在许多含氮废水领域已成功工程化应用。前期我们介绍了厌氧氨氧化技术的发现与发展应用。本文结合厌氧氨氧化工艺的原理,对该技术在不同废水领域的研究及工程化应用情况
AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,硝化菌进行硝化反应,氨氮转化为硝化氮并回流到缺氧段,反硝化细菌在缺氧池利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成游离态氮,同时获得同时去碳和脱氮的效果。一、生物脱氮的基本原理传统的生
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
上一篇围绕反硝化的内回流的停留时间进行了简单的展开,接下来继续围绕反硝化的内回流的工艺控制细节来进行探讨。内回流在工艺上是为了保障硝态氮回到缺氧区进行反硝化反应的,通过回流好氧区末端的混合液,把经过好氧曝气硝化的硝态氮带回到好氧前端的缺氧区内,这就是内回流泵的工艺作用,知道了工艺
上周工艺细节管理对生物池的硝化反应进行了全面的细节讨论,这周开始对脱氮的第二步反硝化反应的工艺细节管理进行探讨,欢迎大家持续关注并参与讨论。在传统的生物脱氮理论中,氮的去除需要经过氨氮在有氧条件下被硝化菌硝化为亚硝酸根和硝酸根,而后在缺氧环境中被反硝化菌利用有机物转换为氮气释放到
过去十年里,世界各地的水务公司都在寻找污水资源化的技术。作为行业巨头,法国威立雅公司不遑多让,早在2011年,旗下的AnoxKaldnes已在欧洲三地——比利时的布鲁塞尔北污水厂、瑞典的Eslv和荷兰的Leeuwarden进行中试实验:用工业和市政有机废弃物作为原料,从污水里回收混合微生物培养的可降解塑料——
这一周继续围绕生化池运行细节展开探讨,针对氮元素的去除进行细节内容的探讨。在污水厂中氮的去除一直是比较头疼的事情,从一开始的氨氮出水在线的实时监控到总氮的实时监控,污水厂对氮族元素的去除工艺管理也一直是在不断地深入的认识和提高中,这个过程也是污水厂从原有的粗放式的工艺管理向精细管
摘要:厌氧氨氧化(Anammox)作为一种新型的自养脱氮工艺,由于其不需要外加碳源、污泥产量少、运行费用低等一系列优势,被认为是一种高效、经济的污水生物脱氮工艺。而纳米材料(nanomaterials,NMs)作为21世纪最有前途的材料,其广泛应用不可避免地会使纳米颗粒释放到水体中,从而对厌氧氨氧化污水
厌氧氨氧化技术(anammox)是20世纪90年代由荷兰代尔夫特大学开发的一种新型自养生物脱氮工艺,与传统脱氮技术相比,自养型厌氧氨氧化工艺被认为是一种更高效、节能的废水处理方法,其在厌氧或缺氧条件下以NO2--N为电子受体,利用厌氧氨氧化细菌(anaerobicammoniaoxidationbacteria,AnAOB)将氨氮直接氧化为氮气。在节约了硝化反应曝气能源的基础上,还无需外加碳源,且由于AnAOB属自养型微生物,生长缓慢,因此,可大大减少工艺的污泥产量。
上海上实宝金刚环境资源科技有限公司成立于2019年9月,由上实集团与宝武集团共同出资设立,是宝山再生能源利用中心项目主体,从事垃圾焚烧发电工程的建设、维修、管理,并服务城市传统工业区的功能转型升级。近日,北极星环保网到访上海宝山再生能源利用中心,实地考察这一国内领先的垃圾焚烧发电项目
一、技术背景在垃圾处理的前沿阵地,焚烧技术凭借着节约土地资源、降低环境污染以及实现能源资源化利用等显著优势,成为了行业内备受瞩目的焦点。但不可忽视的是垃圾焚烧时,其内部复杂的化学成分相互反应,会产生如SOx、NOx、重金属等一系列污染物,其中不乏二噁英等剧毒物质,严重威胁生态环境与人类
“3.29小米SU7高速碰撞爆燃”事件后,小米汽车与雷军便被推上了风口浪尖,电池安全问题更是再度引起热议。近日,小米突然入股了一家固态电池企业——合肥因势新材料科技有限公司。公司新增小米旗下瀚星创业投资有限公司、强邦新材、合肥市包河区科创种子基金合伙企业(有限合伙)为股东,注册资本由100
5月22日,湖北红安食品科技产业园污水处理厂建设工程(EPC+O)项目中标结果公示。红安县市政建设工程公司、武汉市给排水工程设计院有限公司、红安既济水务环境科技有限公司、红安城投建设工程有限公司、湖北金沙建筑工程有限责任公司中标,中标价:102372127.5元。建设规模:包括调节池及事故池、细格
神东电力亿利电厂#1-#4机组宽负荷脱硝改造工程设计服务公开招标项目招标公告1.招标条件本招标项目名称为:神东电力亿利电厂#1-#4机组宽负荷脱硝改造工程设计服务公开招标,项目招标编号为:CEZB250004551,招标人为国能亿利能源有限责任公司电厂,项目单位为:国能亿利能源有限责任公司电厂,资金来源
作者:叶涛1王怡君2唐子龙1潘国梁2单位:1.清华大学材料学院;2.上海国缆检测股份有限公司引用:叶涛,王怡君,唐子龙,等.全钒液流电池电解液容量衰减及草酸恢复研究[J].储能科学与技术,2025,14(3):1177-1186.DOI:10.19799/j.cnki.2095-4239.2024.0838本文亮点:1.通过dQ/dV等电化学特性曲线和化学滴定
垃圾焚烧发电作为高效的垃圾处理与能源回收手段,在全球得到广泛应用。余热炉作为垃圾焚烧发电系统的核心设备,其烟道的通畅性直接关系到系统的稳定运行与发电效率。然而,在实际运行中,余热炉的二三烟道堵塞问题频发,严重影响余热炉性能及整个垃圾焚烧发电系统的正常运转。因此,深入剖析烟道堵塞原
5月16日,江苏徐霞客中心污水处理厂建设项目(包含进出水管网更新改造工程)EPCO工程总承包招标计划发布。徐霞客中心污水处理厂总规模5.0万m3/d,本次一期工程实施5.0万m3/d土建和3.3万m3/d设备,同时建设污水收集系统(DN350-710压力管道全长约11km)、尾水湿地、尾水排放管道及排口(DN1000尾水管道,
5月9日,安徽钱营孜发电有限公司两台机组脱硝超净排放改造EPC总承包项目中标候选人公示。第一中标候选人:中瑞工程设计院有限公司,投标报价:12080000元;第二中标候选人:北京哈泰克工程技术有限公司、世纪华扬环境工程有限公司,投标报价:11970000元;第三中标候选人:武汉立为工程技术有限公司,
5月13日,通辽自主创新承接产业转移示范区工业污水处理厂及事故应急池项目EPC+O中标结果公示。中交建筑集团有限公司(、辽宁省市政工程设计研究院有限责任公司、北京碧水源科技股份有限公司联合体中标,中标金额:157519345.5元。该项目新建处理规模1×10m/d的园区污水处理厂一座;配套建设规模为1×10
固态钠电池兼具资源丰富、安全性高、比能量高等优势,被认为是最有应用前景的新型储能技术之一。然而,固态钠电池中在应用中面临诸多挑战,Na金属负极与固态电解质之间的固-固接触导致高界面电阻和Na枝晶的形成,降低了Na的利用率,并损害了电池的循环稳定性;商业化制造的钠箔的厚度一般在50m以上,较
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!