登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
氮素在水体中的过度积累造成了水体富营养化现象,严重危害生态系统安全。一般采用生物法进行废水脱氮。硝化反硝化工艺是应用最普遍的生物脱氮工艺。最近十几年,出现了一些新的脱氮工艺。厌氧氨氧化工艺是其中最有代表性的突破之一。该方法是利用自养型细菌将氨直接氧化为氮气而实现脱氮的工艺,与传统的硝化反硝化工艺相比具有耗氧量低、运行费用少和不需要外加碳源等优点,是目前已知工艺中最经济的生物脱氮途径之一。
生物反应对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污水的处理效果。工艺投入运行后,由于四季的交替和所处的地理位置影响,若不加以人工调控,温度很难保持适宜。而温度调控则会耗费大量的能源。解决这一难题的最佳途径就是开发高效稳定的低温生物处理工艺。
近年来国内外已有一些研究涉及低温废水生物脱氮技术,提出了一些新方法。笔者将探讨低温对脱氮工艺的影响,比较低温脱氮工艺的运行策略,并据此指出低温脱氮工艺的研发方向。
1低温对脱氮工艺的影响
温度是影响细菌生长和代谢的重要环境条件。绝大多数微生物正常生长温度为20~35℃。温度主要是通过影响微生物细胞内某些酶的活性而影响微生物的生长和代谢速率,进而影响污泥产率、污染物的去除效率和速率;温度还会影响污染物降解途径、中间产物的形成以及各种物质在溶液中的溶解度,以及有可能影响到产气量和成分等。低温减弱了微生物体内细胞质的流动性,进而影响了物质传输等代谢过程,并且普遍认为低温将会导致活性污泥的吸附性能和沉降性能下降,以及使微生物群落发生变化。低温对微生物活性的抑制,不同于高温带来的毁灭性影响,其抑制作用通常是可恢复的。
1.1硝化工艺
生物硝化反应可以在4~45℃的温度范围内进行。氨氧化细菌(AOB)最佳生长温度为25~30℃,亚硝酸氧化细菌(NOB)的最佳生长温度为25~30℃。温度不但影响硝化菌的生长,而且影响硝化菌的活性。有研究表明,硝化细菌最适宜的生长温度为25~30℃,当温度小于15℃时硝化速率明显下降,硝化细菌的活性也大幅度降低,当温度低于5℃时,硝化细菌的生命活动几乎停止。大量的研究表明,硝化作用会受到温度的严重影响,尤其是温度冲击的影响更加明显。由于冬季气温较低而未能实现硝化工艺稳定运行的案例较为常见。U.Sudarno等考察了温度变化对硝化作用的影响,结果表明,温度从12.5℃升至40℃,氨氧化速率增加,但当温度下降至6℃时,硝化菌活性很低。
随着脱氮工艺的不断发展,人们对硝化工艺提出了更高的要求,希望将硝化作用的反应产物控制在亚硝酸盐阶段,作为反硝化或者厌氧氨氧化的前处理技术,可以节约曝气能耗和添加碱量。通过对两类硝化细菌(AOB、NOB)的更多认识,出现了短程硝化工艺。该工艺的核心是选择性地富集AOB,先抑制再限制最后冲洗出NOB,使得AOB具有较高的数量而淘汰NOB,从而维持稳定的亚硝酸盐积累。短程硝化过程通常由控制温度、溶解氧、pH来实现。温度控制短程硝化的基础在于两类硝化细菌对温度的敏感性不同,25℃以上时,AOB的最大比生长速率大于NOB的最大比生长速率。据此提出了世界上第一个工业化应用的短程硝化工艺——SHARON工艺(温度设置为30~40℃)。因此,在低温下实现短程硝化颇具挑战。
1.2反硝化工艺
低温对于反硝化有显著的抑制作用,JichengZhong等研究了太湖沉积物中的反硝化作用,经过数月的实验分析发现反硝化速率呈现季节性变化。U.Welander等考察了低温条件下(3~20℃)反硝化工艺的运行性能,研究表明在3℃下反应器的反硝化速率仅为15℃下的55%。相对于传统的缺氧反硝化,温度对好氧反硝化的脱氮效率影响不显著,王弘宇等筛选出的一株好氧反硝化菌,在25~35℃下都能达到大于78%的脱氮效率。表1概括了不同温度下的反硝化速率。
1.3厌氧氨氧化工艺
有学者的研究表明,能够进行厌氧氨氧化反应的温度范围为6~43℃,最佳温度为28~40℃。在废水生物处理中,活化能的取值范围通常为8.37~83.68kJ/mol,而厌氧氨氧化的活化能为70kJ/mol。因此,厌氧氨氧化属于对温度变化比较敏感的反应类型,温度的降低对其抑制作用明显。
低温对厌氧氨氧化的影响很大,受低温抑制后需要较长时间才能恢复。厌氧氨氧化工艺的运行温度从18℃降至15℃时,亚硝酸盐不能被完全去除,导致亚硝酸盐的积累,对厌氧氨氧化工艺有着显著的抑制效果,从而引起连锁效应,使得厌氧氨氧化菌失活。J.Dosta等在研究温度对厌氧氨氧化工艺的长期影响时,将试验温度由30℃调至15℃,只有氮容积负荷(NLR)从0.3kg/(m3•d)大幅降低至0.04kg/(m3•d)才能保证出水水质。甚至经30d的驯化仍未见好转,将试验温度调回至30℃运行75d后,污泥活性仅为0.02g/(g•d),处于较低水平。
2脱氮工艺的低温运行改进方法
2.1菌种流加
菌种流加来源于发酵工艺的菌种扩大培养技术。菌种扩大培养技术是发酵工业中广泛采用的一种菌种应用技术,在批次发酵中,一般通过“试管→三角瓶→种子罐→发酵罐”的多级扩增,使菌量满足生产需要。在废水脱氮工艺中,除装置内菌种自身增殖外,流加菌种有利于加快菌体积累。废水水质复杂,毒性物质、基质、pH、温度等因素的不稳定,都会对功能菌造成抑制。在受抑制条件下,微生物难以生长。因此菌种流加的优势得以体现。
唐崇俭等采用菌种流加式厌氧氨氧化工艺处理制药废水,废水中NH4+-N和NO2--N的质量浓度分别为120~200mg/L和160~240mg/L,菌种流加速率为0.028g/(L•L•d),容积氮去除负荷(NRR)由0.1kg/(m3•d)提高至7.9kg/(m3•d)。并且认为流加菌种不仅增加了反应器内的污泥浓度和厌氧氨氧化菌所占比例,可能还带入了一些未知的生长因子,才能在如此低的流加速率下,实现厌氧氨氧化的高效运行。
菌种流加有望成为低温下运行生物反应器的一种有效对策。何成达的研究表明在低温期间为保证正常的硝化速率,需要增大反应器的容积。通过向活性污泥系统投加硝化菌的方法可有效解决低温时期需要延长泥龄和加大反应器容积的问题。
菌种流加的操作灵活,不需要长期的适应调整时间,是一种应对低温冲击的快速有效方法,但是不能从根本上解决低温下反应器运行效率低的问题,仅是增加反应器内功能菌的数量及其在混合污泥的比例,缓解低温对生物处理的影响,在反应器容积有限时不适合长期采用。
2.2接种耐冷菌
接种物对于低温条件下厌氧反应器启动运行具有重要的意。耐冷菌能够耐受温度波动,比较适合低温废水的处理。如反硝化耐冷菌——荧光假单胞菌能够在低于10℃的条件下降解苯二甲酸,也有耐冷菌能在低温下降解甲苯、氯酚等难降解有机物。目前的研究重点关注了接种耐冷菌在低温产甲烷系统中的意义,如贲岳等为确保寒冷地区污水生物处理系统的有效运行,接种耐冷微生物,用于生活污水的处理,在6~10℃下,成功地去除污水中86.7%的COD。左剑恶等关注了嗜冷产甲烷菌及其在废水厌氧处理中的应用,从分离培养及生理生化特性、适冷机制和分子生物学研究等方面,对嗜冷产甲烷菌的研究进展进行了全面的综述,并指出接种物对于低温条件下厌氧反应器的启动很重要。
氨氧化古菌(AOA)是一类能够在低温下保持活性的古细菌。如果能将AOA应用到低温废水的生物处理中,将会推动生物脱氮工艺的发展。这可以作为今后研究的一个重要方向。
2.3生物固定化
经固定化处理后,微生物的抗逆性能提高,能耐受外界环境的变化,从而保持了较高的活性。此外,微生物经包埋固定后持留能力得以增强,可望实现反应器的快速启动和高效稳定运行。
通过固定化可以削弱温度变化对硝化作用的影响。张爽等研究了固定化硝化菌在不同温度下对氨氮的去除效能,采用聚乙烯醇-硼酸包埋法固定常温富集培养的含耐冷菌的硝化污泥,用于处理常温和低温生活污水。结果表明,经过固定化处理的硝化菌群即使在低温条件下,也表现出了较高的硝化效率(>80%)。也有学者开展了固定化反硝化细菌脱氮的研究,结果表明,经过固定化处理,提高了反硝化细菌对温度的适应性,固定化反硝化细菌对高浓度的铵离子和低温的耐受性增加。B.K.Pathak等在低温厌氧氨氧化的研究中通过接种固定化微生物和厌氧颗粒污泥处理低含氮废水,在20℃下成功启动厌氧氨氧化,NRR达到了16.22g/(m3•d),总氮去除率为92%。L.M.Quan等以聚乙烯醇(PVA)凝胶和1%的藻酸作为厌氧氨氧化菌的包埋材料,在(25±0.5)℃时,厌氧氨氧化工艺的NRR达到了8.0kg/(m3•d)。
固定化是一种有效的技术手段,然而也会使微生物活性有所降低,且固定化后,传质阻力会增大,氧的传质阻碍尤为明显,固定化更能在厌氧条件下发挥其优势。此外,其成本也有待技术经济评估。
2.4驯化
驯化就是人为的在某一特定环境条件长期处理某一微生物群体,同时不断将它们进行移种传代,以达到累积和选择合适的自发突变体的一种古老育种方法。微生物的驯化是脱氮工艺运用到低温环境中的重要措施,使微生物体内的酶和细胞膜的脂类组成能够适应低温环境,并能在低温条件下发挥作用。大量研究表明,通过适当的驯化策略,经历一定的驯化时间,低温脱氮工艺可以实现稳定运行。
R.D.Jones等认为,如果将AOB的运行温度从30℃直接降至5℃,会导致其失活。逐步降低运行温度,AOB可调整细胞膜中的脂肪酸类型使其在低温条件下不易冻结。后来一些研究得到了与此相悖的结论。因此有学者开始探索低温的驯化策略。
2.4.1逐步驯化
逐步驯化即逐步较缓慢地将工艺温度由适宜温度降至目标温度。在驯化微生物适应当前温度下再将其温度降低,进一步驯化。尚会来等采用驯化方式,逐步降低温度,每降1℃就稳定一个多月,半年后不刻意控制温度,经历了冬季10℃的低温,成功地稳定了常温、低温短程硝化反硝化,亚硝化率始终维持在78.8%以上。J.Dosta等通过该方法在18℃成功启动并稳定运行厌氧氨氧化工艺,但将温度降至15℃时,工艺系统失稳;并认为优化的操作步骤应为:先在厌氧氨氧化最适温度下,积累足够的厌氧氨氧化生物量,然后再缓慢驯化微生物适应低温条件。
2.4.2直接驯化
直接驯化就是将反应系统直接置于目标温度下进行驯化。K.Isaka等研究了在适度的低温(20~22℃)下,厌氧生物滤池中利用厌氧氨氧化实现高效的脱氮。通过直接将接种污泥置于20~22℃的环境下培养,在经过446d后,NLR达到8.1kg/(m3•d)。还在6℃检测到了微生物厌氧氨氧化活性。NLR由22℃时的2.8kg/(m3•d)降至6℃的0.36kg/(m3•d)。
杨朝晖等对比了两种驯化策略下厌氧氨氧化工艺的启动时间,接种以短程硝化-厌氧氨氧化协同作用为优势反应的厌氧序批生物膜反应器中的生物膜(温度为31℃),置于16℃的生化培养箱中驯化,最快56d成功启动了低温厌氧氨氧化;接种与前者相同的生物膜,首先置于31℃的生化培养箱中,然后以每12d降低3℃的速度为梯度逐步降温至16℃,最慢70d驯化结束,其驯化结束的标志是在16℃的环境温度下氨氮的去除效率在1周左右维持稳定。
以往的研究表明,微生物对温度的逐步降低较为适应,如若温度突然降低,则易引起系统的失稳;但较近的研究表明,直接将温度降至目标温度,驯化的时间可能会更短一些。对此尚需系统的研究来论证,试验现象背后的机理仍有待揭示。
3结论
目前低温废水生物脱氮技术的研究已经引起众多学者的兴趣,很多研究结果表明,温度的降低会导致生物脱氮工艺启动时间显著延长,处理负荷和处理效率大幅降低。通过菌种流加、接种耐冷菌、细胞固定化和驯化等有效技术手段,能够提高低温废水的高效性和稳定性。结合目前的研究现状,低温脱氮工艺未来的研究可以围绕下面几点展开:
(1)耐冷菌的分离富集。将分子生物学技术应用于耐冷菌的筛选,将筛选出的菌种富集培养,用作接种物或者流加菌种,并建立菌群动态变化指示系统,指导低温脱氮系统的调控。
(2)加大古菌的研究力度。研究古菌的培养特性,将可培养的脱氮古菌用于废水处理,提高系统对低温和极端环境的耐受性。这方面的研究有望成为今后的热点。
(3)菌种流加过程的优化和控制。深入研究厌氧氨氧化菌的生长和代谢动力学特性,获得菌种流加的定量参数;引进自动化控制技术,实现对该技术过程的自动化控制。
(4)多技术耦合。通过多种技术手段的结合,强化低温生物脱氮工艺。例如在较低温度下通过接种低温优势菌实现了工艺启动后,通过菌种流加优化低温生物脱氮过程,提高其抗冲击能力。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,由中建二局承建的扬州市保护生态环境的重要工程八里镇工业污水处理厂工程EPC总承包项目通过竣工验收,进入试运行阶段。项目位于江苏省扬州市,主要用于处理扬州市经济技术开发区内光伏企业所产生的工业污水。投运后,预计日处理工业污水5万立方米,出水水质可达到准一级A标准。工艺创新破解降解
近日,湖北联投东湖高新集团旗下光谷环保承建的湖北省仙桃市城东污水处理厂扩建改造及配套设施工程(EPC)项目第一组氧化沟改造完成,通过分部工程验收,单机调试合格,顺利通水。这意味着项目建设取得重大进展,为全面通水奠定了坚实基础。仙桃市城东污水处理厂是仙桃市重点项目,污水处理量12万吨/日
近日,山西省朔州市生态环境局对朔州城发生活污水处理有限公司氨氮超标环境违法行为进行行政处罚!氨氮超标0.016倍,污水厂被罚26万元行政相对人名称:朔州城发生活污水处理有限公司违法事实:经调取你单位2023年12月12日至12月17日废水直接排放口水污染源自动监控系统数据采集传输仪主要污染物COD、氨
污染物生化去除率差,难道只怪污泥有没有认真工作?有的时候找找自己的原因,有没有给污泥提供适合的条件!就像污水处理行业中的一句名言:“细菌并不知道池子的形状和工艺的名称,只要有硝酸盐、碳源和氧气不存在的条件,它就在那儿反硝化。”!本文将具体介绍一下影响各类污染物生化去除效果的影响因
01项目概况文成珊溪巨屿污水处理厂扩容项目是文成县生态产业园综合配套工程项目,同时也是文成县重要环保基础设施。项目规模5000吨/日,采用先进一体化“AAO+MBR”系统,深度处理采用水艺增强型超亲水膜处理技术,最终出水由原来的一级A提高到地表水类III类标准。02核心工艺段介绍污水经过预处理系统后
当前污水处理中的生物处理大多是采用与好氧相结合的处理工艺,溶解氧在实际的废水生物处理操作中具有举足轻重的作用,这一指标的不合适或波动过大,会迅速导致活性污泥系统受到冲击,进而影响处理效率。因此在实际生化处理工艺中,需严格控制溶解氧的含量。一、什么是溶解氧(DO)DO是溶解氧(Dissolve
【社区案例】出水氨氮超标,进水氨氮300,一级AO工艺,加药只加了次氯酸钠,出水氨氮50,请问大神是哪里出了问题?氨氮超标是污水处理中常见异常情况之一,当出水氨氮发生异常时,可通过对系统耗氧速率、碱度消耗等硝化影响因素的分析,可较为便捷、准确的判断硝化效果的发展趋势。同时,采取切实有效
【社区案例】AO工艺,污水进水pH8.5左右,碱度300左右。两个指标有什么区别?酸碱度pH在污水处理中是一个重要的控制条件,是细菌正常代谢的环境条件之一,而碱度主要应用在脱氮工艺中,一般要求脱氮之后要保证80ppm以上的碱度,以满足硝化的消耗!一、pH与碱度的区别1、pH的概念pH值,亦称氢离子浓度指
近日,黑龙江省生态环境厅通报了3起打击重点排污单位自动监测数据弄虚作假违法犯罪典型案例!其中一起涉水案例:黑龙江省某污水处理有限公司修改自动监测设备参数伪造监测数据案2021年8月31日,佳木斯市生态环境局执法人员会同黑龙江省生态环境保护综合行政执法局执法人员对桦川县某污水处理有限公司污
近日,山西生态环境厅通报了2022年11、12月份严重超标的废气(废水)重点排污单位,其中包含两家污水处理厂。被通报的单位所属地市生态环境局要依法依规严格监管执法,同时,对严重超标的排污单位有针对性地进行帮扶,督促引导企业尽快制定完善整改方案,确保实现稳定达标排放。本文以生活污水作为研究
一、污水处理厂规模及工艺该污水处理厂上游很多工业厂,偷排情况较为严重。前处理单元分别包括粗格栅及进水泵房、细格栅及曝气沉砂池等一组系统。曝气沉砂池出水进入主生化段。主生化段采用AA/O(设置预缺氧)生化反应工艺。后深度处理系统包括二沉、转盘滤池及次氯酸钠消毒,同时采用地埋式结构设计,
在2005年慕尼黑IFAT展会上,HUBER公司销售出第1000台COANDA洗砂装置,这在当时意味着该设备在砂处理领域已经被认为是标准的解决方案。而在1994年,当第一个含有COANDA洗砂装置的污水处理项目建成调试时,污水厂工作人员对这项目技术还充满不屑,认为没有必要对砂砾进行清洗,同时技术上也不可行。然而
中国石油正在开发这一种非常规天然气。(来源:石油Link文|风华)生物天然气正快速升温。作为能源的一种载体,生物天然气因为具有可再生性,在能源脱碳的过程中扮演着日益重要的角色。国内外对生物天然气的发展也愈发重视。我国明显加快了生物天然气的发展步伐。至今,我国规模化生物天然气项目已经有
作为省国资委A类拓新企业、粤海水务下属科研创新核心平台公司,粤海科技公司依托粤海水务产业优势资源,深耕水务新工艺、新材料及低碳节能技术开发应用、智慧水务、环境监测、水务增值业务等领域,积极打造原创技术策源地、培育发展新质生产力、塑造发展新动能。2024年,粤海科技公司涌现一批科技创新
近日,由中建二局承建的扬州市保护生态环境的重要工程八里镇工业污水处理厂工程EPC总承包项目通过竣工验收,进入试运行阶段。项目位于江苏省扬州市,主要用于处理扬州市经济技术开发区内光伏企业所产生的工业污水。投运后,预计日处理工业污水5万立方米,出水水质可达到准一级A标准。工艺创新破解降解
8月7日,浙江金华市第二污水处理厂项目招标,总投资约60053.21万元,招标范围:施工图纸范围内的所有工程,招标人金华市水处理有限公司。建设规模1、本工程建设规模为新建1座日处理能力5万吨/日(土建按10万吨/日实施)的污水处理厂,采用半地埋建设形式,主要建设内容为污水处理、污泥处理、臭气收集处
摘要:本文概述了德国埃尔朗根(Erlangen)最先进的现代化污水处理厂的发展历程及其显著特点。这座污水处理厂集成了最前沿的污水处理技术,展现了卓越的污染物减排能力。在处理过程中,特别关注了微污染物的去除,以进一步提高水质的净化水平。自2020年以来,埃尔朗根污水处理厂实现了能源自给自足的重
近日,湖北联投东湖高新集团旗下光谷环保承建的湖北省仙桃市城东污水处理厂扩建改造及配套设施工程(EPC)项目第一组氧化沟改造完成,通过分部工程验收,单机调试合格,顺利通水。这意味着项目建设取得重大进展,为全面通水奠定了坚实基础。仙桃市城东污水处理厂是仙桃市重点项目,污水处理量12万吨/日
近年来,由于我国各地区水环境改善的环境目标的不断提升,各地市对市政污水处理厂的出水都提出了更严格出水水质标准,市政污水处理厂水处理厂也在不断地进行升级,以符合更严格的排放要求。在一些难以扩充厂区土地的地区,采用MBBR(移动床生物膜反应器)的工艺在污水厂的生物池进行原位改造,可以在一
进入“十四五”下半场,中国产业发展的低碳化走向明显。来自“双碳”目标的承压,各行业都在寻求低碳绿色发展的解决之道。污水处理行业虽然不属于发电、钢铁、化工等高耗能行业,但全国污水处理厂数量多、分布广,总能耗不容小觑。水处理企业身处行业发展改革浪潮中,感知政策对行业的影响尤为重要。在
最近,有小伙伴反馈,自己的污水处理系统又开始出现膨胀了,每年都会这样,很有周期性!其实,很多污水处理系统在温度高的夏季和寒冷的冬季都不会出现严重的污泥膨胀情况,往往出现在每年的春夏、秋冬换季时。即发生在气温、水温和气压交变的环境。在分析一些污水处理厂的统计数据后,发生泡沫现象的时
【社区案例】我这边是颜料废水,SV30控制在60,经验是说泥量增长缓慢所以前期基本没排泥,现在SV30涨到80-90了,现在开始排泥了,但也是少量的。现在是氨氮有些上涨了,会是排泥造成的吗?(溶解氧控制在4左右)其他指标还可以COD和TN。(来源:污托邦社区)要保证硝化的正常进行,需要保证一定的硝化
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
2025年2月25日,中国光大水务有限公司(「光大水务」或「公司」),一家以水环境综合治理业务为主业的环保集团,公布本公司及其附属公司(统称「本集团」)截至2024年12月31日止财政年度(「2024财政年度」或「回顾年度」)之全年综合业绩。经营业绩方面,2024财政年度,本集团坚持发展为第一要务,努
11月26日,大九污水处理厂三期扩建工程施工招标,合同估算金额13000万元,建设规模:大九污水处理厂三期扩建工程,项目新建处理规模为3万吨/天,配套管网建设进水联通管网、尾水管网、放空管网等生产管网,管网总长度约1千米。大九污水处理厂三期扩建工程施工招标公告1.招标条件本招标项目大九污水处理
近日,由江苏交建公司承建的长泾第一污水处理厂(一期)工程项目最大单体构筑物——“A/O池及鼓风机组”主体结构顺利完工。该项目位于江苏省江阴市长泾镇,总占地面积约69亩,工程建设内容主要包含污水处理构筑物、设备安装及配套管网等。本次完工的“A/O池及鼓风机组”为厂区内最大单体构筑物,结构尺
9月10日,重庆巴南金竹污水处理项目(厂区)施工(第二次)中标结果公布,中标人中铁一局集团有限公司,中标金额40165258.65元,招标人重庆水务环境控股集团有限公司、重庆碧水源建设项目管理有限责任公司。建设规模:新建污水处理厂一座,新增污水处理能力2万立方米/日,污水处理工艺采用改良A/A/O生
近日,中国能建葛洲坝生态环保公司与杭州市余杭区智慧渔业研究中心、浙江农林大学农村环境研究所签署战略合作框架协议。中国能建葛洲坝集团公司副总经理、总工程师郭光文,中国能建葛洲坝生态环保公司党委副书记、总经理沈远持见证签约。中国能建葛洲坝生态环保公司副总经理刘运东与杭州市余杭区智慧渔
2月7日,青岛市新河生态化工科技产业园区污水处理配套设施建设项目一期EPC+O公布中标结果,中标单位为五矿二十三冶建设集团有限公司,南京工大环境科技有限公司,青岛恒卓环境科技有限公司联合体,中标金额20025.64555万元。项目采购人为青岛新河科技产业城开发建设有限公司,项目总投资额24038万元。
【社区案例】一级A排放标准,目前出水接近临界值(但总磷很低)请教一下有没有老师知道怎么处理?从描述上看,大概率是营养比失衡导致的,进水CNP比的失衡会导致污水系统的诸多问题,例如污泥膨胀、出水超标等问题,而且是无法通过改变操作条件来弥补的,需要将CNP比调整相应的比例,才能解决,本文将从
近日,金凤污水处理工程顺利通过竣工验收,为建转运奠定了基础。竣工验收会现场金凤污水处理工程位于重庆高新区新凤大道,污水厂总用地面积35071平方米,项目设计总规模为4万立方米/日,本项目为一期工程,建设规模为2万立方米/日。污水处理采用具有生物脱氮除磷功能改良型A2/O生物池工艺,深度处理采
2024年首场寒潮来袭,又恰好遇上大寒节气,“冰冻”模式将全线开启!在我国城市生活污水处理厂的建设与管理中,相关工艺和技术的设定都是符合常温情况的要求,污水处理厂在低温条件下运行势必会因整体运行情况的变化产生一定影响,所以,低温运行控制尤其重要!1、预处理系统冬季污水处理厂运行时普遍
1月10日至11日,中铁一局八公司承建的重庆西永污水处理厂三期扩建项目和重庆金凤污水处理厂项目顺利通过竣工验收。西永污水处理厂三期扩建工程位于渝遂高速西侧的雷家坡附近,总规模达6万立方米/天。项目采用具有生物脱氮除磷功能的改良型生物池工艺,出水水质达到梁滩河流域城镇污水处理厂主要水污染
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!