北极星

搜索历史清空

  • 水处理
您的位置:环保节能余热余压技术正文

陶瓷烧成中的节能技术

2016-03-28 11:47来源:佛山陶瓷作者:曾令可 李萍关键词:余热回收节能技术辊道窑收藏点赞

投稿

我要投稿

5先进的燃烧器是关键

喷嘴使用时的温度控制容易出现偏差。由于高温火焰流因浮力而上升,形成窑内温度上高下低,使热电偶检测到的温度偏高,故造成热电偶所连接的仪表显示温度与窑内制品实际温度发生很大的偏差。采用新型高速喷嘴或脉冲烧成技术,可以使窑内温度变得均匀,减小了窑内上下温差,不但能缩短烧成周期,降低能耗,而且可以提高制品的烧成效果。特别对于宽断面的窑炉,采用脉冲比例烧嘴或高速烧嘴;对于烧成用水煤气的宽断面辊道窑,采用我们研制的二次预混式烧嘴,不但可以减小窑断面温差,而且可以节约能源10%左右。

6选用高效的保温材料和涂层技术

窑体热损失主要分为蓄热损失与散热损失。对于间歇式窑炉来说两者均存在,但连续式窑炉仅存在散热损失。减少热损失的主要措施是加强窑体的有效保温。并且在保证窑墙外表温度尽可能低的情况下,选用最合理最经济的材料以取得最薄的窑墙结构。高性能保温材料或绝热材料在陶瓷窑炉上的应用,将使陶瓷窑炉的窑墙结构发生革命性的变化,不但可以减少窑墙的蓄散热,而且可以大大地减薄窑壁的厚度,使窑壁的结构简单化。

采用纳米保温棉的导热系数为0.036w/(m・k),比常用的保温棉0.15w/(m・k)小近3倍,窑墙可减薄75mm,窑炉外表温度下降5℃,可达到1:4的效果。

另外,为了提高陶瓷纤维抗粉化能力,增加窑炉内传热效率,节能降耗,可使用多功能涂层材料,如热辐射涂料。在高温阶段,将其涂在窑内壁的耐火材料上,材料的辐射率由0.7提高到0.96,可节能138.3MJ/h;而在低温阶段涂上该涂料后,窑内壁辐射率从0.7提高到0.97,可节能19.0MJ/h。

7计算机模拟和智能控制技术

通过计算机对陶瓷制品的烧成过程进行模拟,可以对窑炉结构,烧嘴结构进行优化。利用计算机对在不同烧成制度、窑炉保温性能等条件下的窑内传热过程情况进行模拟,可以找出它们对窑内传热过程影响的定量关系。加强对陶瓷烧成过程的精确控制,利用智能模糊控制及计算机一体化控制技术做到有的放矢,可以大大提高生产效率,减少能源的消耗和浪费,而且可以达到控制有害气体排放的目的。在陶瓷窑炉中采用多变量模糊控制技术,为现场操作工人的操作起到了较好的指导作用,同时为生产车间的管理提供了科学的手段,大大加强了车间生产管理水平,还能够降低窑炉的燃料消耗,提高产品质量和合格率,给企业带来显著的经济效益。按生产实践证明,理想的控制系统可以节能5%~10%。

8其他节能低碳技术

8.1陶瓷薄型化

陶瓷的簿型化,除了瓷砖外,也包括日用瓷、卫生陶瓷和电瓷等。目前市面上的大规格陶瓷砖厚度一般都在10mm以上,大规格瓷片也在10mm左右,而大规格抛光砖厚度则超过14mm,“砖王”甚至厚达25mm。如果瓷砖厚度由10mm降到8mm,按目前我国墙地砖90亿m2年产量计算,瓷砖减薄了20%,则每年可节约原料3600~6000万t,同时每年的综合能耗可减少约1530顿标准煤,经济效益和社会效益都非常可观,瓷砖的薄型化将成为行业未来发展的主要方向。蒙娜丽莎是国内陶瓷薄板的先行者,一经推出,就在行业内引发了一场节能减排的风暴;超薄板砖一般规格为1000mm×3000mm,厚度3~6mm,比传统的陶瓷砖每平方米节约原料30%~60%,节约用水63%,节约用电26%,减少污染物排放70%以上。

8.2陶瓷废料的资源化应用

瓷砖的减轻不仅可以通过减薄来实现,还可以通过改变瓷砖的内部结构来实现。目前轻质砖是采用陶瓷生产废料为主要原料,通过加入特殊的发泡材料,在高温下烧制而成的一种具有陶瓷性能、比重小的功能性新型保温装饰材料。轻质新型建材与同类产品相比,单位面积建筑陶瓷材料用量降低50%以上,节约60%以上的原料资源,降低综合能耗50%以上,主要性能指标均达到或超过国家相关标准,可广泛运用。2009年以来陆续面市的轻质砖包括欧神诺的轻质砖、晶立方及蒙娜丽莎的QQ板等产品,在抛光砖的废渣循环利用上取得了突破。

梅州某陶瓷企业用废瓷和低品位原种制备青花瓷,废料利用率20%~30%,烧成温度降低50~80℃,节能15%~20%。潮州某企业利用30%~35%的废瓷和尾矿制备卫生陶瓷,烧成温度1210℃,综合节能10%,年节标煤560t,CO2减少排放20%,年减少排放1250tCO2,年处理工业废料17500t,废料15000t,尾矿2500t。窑炉热效率48.57%,余热利用率39.29%,烧成工序能耗162.8kgce/t瓷。

佛山摩德娜科技有限公司利用工业固废及陶瓷废料作原料,用湿法挤出成型技术制备陶板,与传统半干压成型方法相比较,可节约用水50%,节省燃料25%,节电18%,固废排放可减少20%,固废利用率可达50%。

9因红外热成像测试热工设备外表面温度场

9.1窑墙外壁温度的测试

辊道窑作为近三十年发展起来的新型快速连续式工业窑炉,目前已广泛应用于建筑陶瓷、日用陶瓷、卫生陶瓷工业生产中。为计算辊道窑墙体散热,不仅需要知道各层耐火材料和保温材料的导热系数与温度的关系,还要知道窑墙内外壁面的温度。而外壁面温度值的获取,一直是陶瓷热工技术人员所面临的一个难题。为此,选取某建筑陶瓷厂正常运行的辊道窑作为测试对象,尝试使用先进的红外热像仪对高温区窑墙外表温度进行测试,不仅可以直观的看到墙壁整体的温度分布情况,还能获得整体壁面的温度平均值和所需的各点温度值。图3是辊道窑烧成带辊棒上和辊棒下外墙表面温度的热像图。

图3 辊道窑烧成带辊上和辊下外侧墙表面温度热像图

从图3中可以看出,棍棒位置周围是温度最高区域,越靠近棍棒外表温度就越高;而棍棒上整个区域的外表面平均温度为86.8℃,辊棒下外表面为87.5℃。利用日本产DRKCTHERMOMETER表面测温仪(-50~999℃)进行相关点的测温,即从每个测试区域内的不同位置选取了六个点进行取点温度测试,每个点的具体温度见表1所示;辊棒上外墙表面六个点温度的平均值为87.07℃,辊棒下外墙表面六个点的平均值为90.63℃。由此可以看出,通过测点温度后取平均值所获的温度都要高于红外热像仪对整个平面温度测试后由仪器通过数据处理后所取平均值。取点测试由于取点位置的不同以及取点数的多少都会对最后的测试结果有很大影响,如把测量点放在靠近辊棒端头处,温度可过300℃以上。而利用红外热像仪对整个表面温度进行扫描后取区域的平均值,实际上是测试面积内每个光点温度的平均值,不仅测试结果更精准,还可以同时获得整个外墙表面温度分布的直观热像图。

另外,从热像图中可以清楚地看出,在每一根棍棒的周边形成一个圆环,在圆环处的温度特别高,有的点高达400~600℃。这是因为棍棒不断转动,使填塞在棍棒与棍棒砖之间的保温棉间形成缝隙,由于窑内为微正压,火焰便从缝隙中往外露―即所谓的漏热现象。故加强此处保温棉的填塞和维护是关键。

表1是图3中热像图中测试区域在不同位置选取的六个点的温度及其平均值,另外表格的最后一栏为红外热像仪对整个测试区域面所测试的平均温度值,其值都低于取点测试取平均温度值。

原标题:陶瓷烧成中的节能技术
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

余热回收查看更多>节能技术查看更多>辊道窑查看更多>