登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
水是可再生资源,但日益增长的人口数量和人口密度给很多地方的供水能力带来了压力。据联合国预测,到本世纪中叶,有20-70亿的人将面临水资源缺乏的局面。为了应对这一情况,水行业将越来越依赖海水和苦咸水脱盐技术。
脱盐技术分为膜法技术和热法技术。脱盐技术的主要缺点是成本高。SWRO技术中,电能花费占到了总处理成本的30%,因此降低能耗是降低脱盐处理成本的关键。一些新型膜材料可以降低能耗的同时带到良好的脱盐效果。本期微信将介绍另外两种新型膜材料。
1纳米管膜
碳纳米管由于传输快、表面积大和易功能化,已被研究用于脱盐。通过Hagen-Poiseuille方程预测,相比RO膜,使用碳纳米管脱盐能耗可以显著降低,这是由于碳纳米管的水通量比理论水通量高2-5倍。通过碳纳米管膜的水和离子的直径范围为6-11Å。这么高的通量主要归功于纳米管的原子平滑度和分子有序化,水分子以一维纵队的形式通过碳纳米管。科学家认为膜中加入碳纳米管是有前途的脱盐技术,因为管的大小和均匀性可以达到拦截盐分的要求。使用碳纳米管RO膜预计可增加10倍的渗透率。
碳纳米管的离子拦截受纳米孔径和膜表面道南平衡所产生的离子水合直径的空间效应控制。研究人员通过分子动力学模拟发现,随着纳米管的内径从0.32nm增加到0.75nm,膜对盐分的去除效率从100%下降到58%。结果发现,碳纳米管膜的除盐效率随着膜表面静电相互作用电荷的增加而提高。因此对碳纳米管的表面进行改性可能提高脱盐效率。与传统的膜相比,碳纳米管膜的另一个优势是其出色的机械性能带来较长的使用寿命。研究表明,与碳纳米管相比,氮化硼纳米管具有优良的透水特性,同时能实现100%的脱盐率。使用半径为4.14Å的纳米管可将膜功能化为阳离子选择性膜。当一个纳米管半径为5.52Å时,膜被功能化为阴离子选择性膜。
碳纳米管的盐吸附容量也经过了评估。研究结果表明,等离子体处理的碳纳米管可具有超高盐吸附容量,重量超过400%。改性的碳纳米管制备是将一层薄薄的纳米管附着到混合纤维素酯多孔基质上。这些改性的碳纳米管的吸附容量比活性炭高出两个数量级。盐吸附容量通过自来水冲洗就可以完全恢复。改性碳纳米管的盐吸附容量增加是因为等离子体处理后的膜表面存在缺陷。除了高表面积,由于羧基和羟基功能化,改性后的表面增强了表面亲水性和离子结合特性。由于盐是被吸附而不是被拦截,所以无需施加压力。因此可以大幅减少能耗。
成套的纳米管膜相比传统膜更具显著优势,通过降低水的驱动压力从而降低能源成本。但碳纳米管膜的产水能力是有限的,因为渗透压受热力学限制。还不确定是否可以将纳米管高密度排列以获取理论预测渗透率。碳纳米管是一种可大量生产的材料,然而纳米管合成后,制造大表面积的膜是其商业化的关键步骤。
2石墨烯膜
石墨烯膜具有快速输水性能和良好的机械性能。类似于碳纳米管中的水渗透机制,二维石墨烯微孔允许低摩擦单层水分子通过,以这种尺寸的拦截作为主要筛分机制。研究人员通过超声分散石墨烯以及喷涂或旋涂分层法来制备氧化石墨烯(GO)薄片。虽然石墨烯不透水,但可通过毛细管运输水分子。并且通过开放的孔隙能以最快的速度运输水分子。石墨烯层内形成的毛细管主要都是官能团,像羟基和环氧树脂等,能创建微孔。这些官能团组成一个集群,使石墨烯薄片中大的、可渗透的区域不被氧化。这些GO薄片的非氧化区域间形成了一定的空间。研究发现薄片在干燥状态下是真空密封的,但当浸泡在水中时就会膨胀并形成分子筛,从而阻挡所有水合半径大于4.5Å的溶质。微孔在水环境中是开放的,从而产生低摩擦水流。
科研人员还研究了石墨炔,即单原子厚度的石墨烯的同素异形体。石墨炔是以乙炔连接键(碳碳三键)取代了石墨烯中的某些共价键,形成α-石墨炔,β-石墨炔,γ-石墨炔及其类似物。结果证明海水中常见的离子被石墨炔单分子层100%去除,而透水性却比商用RO膜高出两个数量级。使用分子动力学和计算机模拟研究水分子通过GO层的传输及其在脱盐领域的应用。研究人员利用分子动力学和计算机模拟来研究水分子通过GO层的运输。结果表明,保持脱盐率100%的情况下,当毛细孔隙尺寸增加时,通过石墨炔膜的水通量升高了2个数量级。
研究表明可以通过生成纳米级微孔来调整GO膜的选择性。氧化刻蚀处理生成的微孔直径为0.40±0.24nm,密度超过1012cm-2。氧化时间短时,由于在孔隙边缘带负电荷的官能团产生的静电排斥作用,微孔是阳离子选择性的。氧化时间更长时,微孔阻止较大有机分子的传输,但允许盐通过,意味着存在空间排阻。为了制备能应用于脱盐的GO膜,研究人员在聚酰胺复合膜(PA-TFC)RO膜上集成GO纳米薄片。通过逐层叠加电荷相反纳米薄片,将GO材料涂覆到PA-TFC膜表面,从而增加RO膜的亲水性并减少其表面粗糙度。GO纳米薄片改变了RO膜的特征,从而增强了抗蛋白质污染和耐氯性。
延伸阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
每年全球水奖的入围名单总是可以帮助我们更深刻地理解目前行业的发展趋势,今年也不例外。以下是我对今年的入围名单的一些思索。
随着国家对环保要求的提高和对城市中水回用的推行,越来越多的已建电厂将锅炉补给水的膜处理工艺列入技改项目。城市中水污染性高,在其回用过程中,多家发电企业的化学制水系统和循环水系统频繁出现问题。
工业化发展带来的污染促使人们寻求解决水资源短缺的方法,其中水体脱盐是开发利用非常规水资源中最有前途的方法之一,海水是水体脱盐的主要目标物,海水淡化行业的发展也促进了诸如污水处理厂三级废水、地表含盐水、高硝酸盐工业、罐头加工和垃圾填埋场渗滤液处理等高盐废水脱盐技术的发展。自20世纪50
在改善淡水供应方面脱盐系统起着非常重要的作用,但是某些自然资源过咸,以至于当前的解决方案无法处理。这种高盐度水中的盐含量可能是盐水的10倍之多,现在科学家们开发出了一种太阳能淡化系统,该系统依靠特殊的涂层来对抗这种超咸水。在包括石油和天然气等工业生产中可能会产生高盐度的水,现有的脱
今天,GWI将为您带来全球脱盐技术地图,为您简析脱盐领域技术的市场情况。本月的图表选自GWI最新出版的全球脱盐和回用水市场研究幻灯片报告。从图中来看,海水淡化领域的应用技术目前已经处于相对成熟的市场,反渗透RO技术占据主导的地位,而未来的提升空间主要表现在:更高通量的膜片更高的回收率更好
随着城市化的发展和人们生活水平的不断提高,水环境污染越来越严重,传统的水污染治理技术越来越难以满足目前城市化进程中的水污染治理需求。与此同时,政府不断出台相关政策,提高水污染物排放标准。在此背景下,一些新的水污染治理技术涌现出来。在2019第二十届中国国际环博会上,EVOQUA懿华水处理公
反渗透设备是目前最为广泛的一种制备高纯水的脱盐技术,反渗透设备的分离对象主要是溶液中的离子和有机物。并且现在反渗透设备是当今社会最为先进的膜分离技术。反渗透设备的原理就是在高于溶液渗透压的作用下,根据其他的物质是不能够透过半透膜的,从而将这些物质和水分离出来。由于反渗透膜的膜孔径
据外媒报道,印度国家海洋技术研究所(NIOT)正在拟建一座使用低温热脱盐技术的近海海水淡化厂,近日已提交了详细的项目报告。报告显示,该海水淡化厂将建在距离印度南部泰米尔纳德邦金奈市海岸40千米的海面上,日产淡水量预计达10,000msup3;。如包含近海作业平台成本在内,该项目成本大约为2,000万卢比(
全球水的总储量为13.86亿km3,海水就占有96.5%,人类可取用的地表水和浅层地下水仅为0.79%,且随地域和季节变化分布极不均匀。为了向大海索取淡水,上世纪五十年代初,膜技术便被优先提出来了,至七十年代海水淡化技术在世界上实现了商品化,经过产品换代、工艺革新,目前已成为最经济的海水淡化和高盐
科学家用石墨烯制成了可以筛掉盐类离子的筛子。曼彻斯特大学的科学家的新发现在发表在《自然纳米技术》杂志上。此前的石墨烯氧化物膜已经显示出了进行气体分离和水过滤的强大潜力,它们已经被证实可以用于过滤掉小纳米颗粒,有机分子甚至大颗粒的盐的能力。然而它们不能用于筛出脱盐技术中的普通盐类,
反渗透设备是目前最为广泛的一种制备高纯水的脱盐技术,反渗透设备的分离对象主要是溶液中的离子和有机物。并且现在反渗透设备是当今社会最为先进的膜分离技术。反渗透设备的原理就是在高于溶液渗透压的作用下,根据其他的物质是不能够透过半透膜的,从而将这些物质和水分离出来。由于反渗透膜的膜孔径
东丽株式会社(总公司:东京都中央区,代表取缔役社长:大矢光雄。以下简称“东丽”),此次成功开发出针对工厂废水的再利用及污水处理等严苛的使用条件下、不仅能保持现有的高度污垢去除性,并能长期稳定地生产优质水的高耐久性反渗透(RO)膜※1。本研发品使膜在清洗时对药物的耐久性提高到过去的2倍
导言:水技术在线(AquatechOnline)采访了著名膜专家GraemePearce博士。他表示,陶瓷膜在公用事业中应用的时机已经到来,或将成为水业完美风暴。在技术探索(TECHDIVE)即将进行之前,水技术在线(AquatechOnline)对关于陶瓷膜时代是否来临采访了著名膜专家GraemePearce博士。完美风暴水技术专家表示,陶瓷
水处理反渗透设备高/低压保护,是为了防止RO高压泵空转或在超过极限高/低压下工作。
反渗透(RO)膜作为污染物截留效率最高的过滤膜,其微观结构及过滤机理一直是研究的热点。那么,RO膜究竟是有孔膜还是无孔膜?对于这一问题的认知和回答将直接影响对RO膜过滤机理的认识。随着技术手段的进步以及对RO膜微观结构的深入解析,上述问题的答案也在不断发生改变。
反渗透系统制取纯水有个特点:反渗透膜的实际产水量受温度的影响变化较大。大多数实验室超纯水机或反渗透纯水设备产水量是按反渗透膜在25℃进水温度下的标准产水量来标注的。温度变低,水的粘度增加,水的扩散性减弱,产水量也随着温度下降而降低。
通过城市污水UF+RO和传统多介质过滤器+RO的中试平行对比运行,考察UF膜作为RO膜前处理的作用和优势。结果表明,对于营养物指标(N、P),及有机物指标(TOC、蛋白质、多糖类)的去除效果上,UF与多介质过滤器相当;但在与RO生物污染密切相关的一些指标(ATP),UF体现出显著的优势;且UF出水的SDI值也显著较
在内蒙古乌海市的重点工程项目——海勃湾北部净水厂及配套管网改造工程,应用了反渗透技术,该净水厂日供水量10万吨,可填补乌市的供水缺口,满足30万用户的用水需求,能让乌海人喝上优质放心的好水。反渗透技术,如何实现将饮用水变为优质好水的?据了解,该净水厂主体工艺工程采用了时代沃顿抗污染系
RO膜反渗透系统的故障通常至少出现下列情况:第一、在工作压力,电导率正常时,产水量下降;第二、标准化后脱盐率降低,在反渗透系统中表现为产水电导率升高;第三、标准化后产水量下降,通常需要提高运行压力来维持额定的产水量即工作压力上升;1、标准化后产水量下降RO系统出现标准化后产水量降低,
1管网式反渗透膜技术1.1管网式反渗透膜的特点管网式反渗透膜(spacertubereverseosmosis,STRO)最早来自德国Rochem公司,目前主要由美国Nanostone公司生产。其膜元件采用单支膜元件独立膜壳设计,常用25m2的间隔管,膜元件直径为8英寸(20.3cm),长度为1m。STRO拥有开放式的流道和、卷式的膜组件和无
导语未来三年,全球新建反渗透脱盐设施的规模总量将大幅增长,RO膜等关键设备市场供需紧张。据GWI海水淡化与膜专家最新预测数据显示,未来三年全球新建反渗透脱盐设施的规模总量将大幅增长——设施处理能力将达到2300万立方米/日(870亿GPD),其中近90%将是反渗透海水淡化厂(SWRO)。与2006至2008年
误解一:膜法水处理设备是高难操作系统膜法水处理系统的自控要求远高于常规生化处理系统,很多使用者误以为膜法系统操作困难。事实上,膜法水处理系统操作高度自动化,启停、加药和在线冲洗等操作都由PLC系统程控执行,可以做到无人值守,仅需人工定时巡检配药、周期性维护清洗,基本不需要额外增加操
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!