北极星

搜索历史清空

  • 水处理
您的位置:环保环境修复土壤修复技术正文

土壤修复“法宝”:菌根共生生态生理研究回顾与展望

2016-05-09 10:02来源:农业环境科学作者:李保东关键词:菌根土壤修复生态环境收藏点赞

投稿

我要投稿

(1) 养分贫瘠

菌根真菌能够帮助宿主植物有效获取土壤中的矿质养分,尤其是在土壤中移动性较差的磷及微量元素铜、锌等。增强植物对土壤磷的摄取能力是菌根共生体的最重要功能。菌根真菌对土壤磷的吸收和传输机制是特异高效的,这不仅是菌根共生体系互惠关系的基础,也被认为是菌根帮助植物适应各种逆境胁迫获得更好生长的生理基础。庞大的根外菌丝网络不仅大幅度地延伸了根系吸收范围,而且对土壤理化性质产生影响,从而促进难溶性无机磷的释放;根外菌丝中表达的磷转运蛋白可能直接参与了从土壤中获取磷的过程;菌丝吸收的磷以聚磷酸盐颗粒形式向宿主植物的根部输送;在植物-真菌交换界面-丛枝结构-聚磷酸盐解体释放出磷酸根离子传输给根细胞。总体上,有关菌根真菌吸收并向植物传输磷的生理和分子机制目前已研究得比较系统深入,近年研究热点集中于菌根特异磷转运蛋白的克隆及功能机制,以及不同菌根真菌共生效率差异机制等。类似于一种市场经济现象,植物可能会选择更经济有效的养分吸收途径,并且分配更多的光合产物给贡献更多矿质养分的共生伙伴。

近年来,不少研究者开始关注菌根真菌对氮素的吸收、同化和传输机制,一些研究成果逐步更新了人们对菌根共生体生理功能的认识(Veresoglou et al.,2012)。研究表明,AM真菌根外菌丝可以从周围环境中吸收不同形态的氮素。当NH4+和NO3-并存时,AM真菌更容易吸收同化NH4+。此外,AM真菌还可以吸收利用有机氮,如尿素、Gly、Gln 和Glu等,其中吸收尿素和NH4+比其它氮源速度更快。菌根真菌吸收N后往往是先将N整合入有机N载体-氨基酸,再以氨基氮的形式向植物输送N。在外生菌根中,真菌吸收同化N后产生的自由氨基酸主要是Gln,所以外生菌根以Gln形式向植物运输N。Jin等(2005) 证明了AM真菌在吸收N后储存于Arg,该氨基酸是AM真菌吸收利用N后合成的有机N载体。在根内菌丝体从Arg分解释放出来的N以NH4+形式释放,作为N源可以整合入菌根内的其它氨基酸,也可以传递给寄主植物(Govindarajulu et al. 2005;Chalot et al. 2006)。

外生菌根真菌能够矿化有机质并吸收利用其中的N素,这已基本成为共识。AM真菌也可以通过直接或间接途径调节有机氮的矿化过程。Whiteside等(2009)应用最新的技术-量子点(quantumdots)标记的方法证明AM真菌可以直接吸收、转运有机氮,并且还观察到量子点标记的有机氮能够存在于土壤菌丝、植物根系和植物茎部。AM真菌根外菌丝可能分泌一些与氮矿化有关的酶类,从而加速了有机氮的矿化,然而到目前为止还没有相关直接证据。目前的试验证据主要支持AM真菌通过改变土壤微生物群落结构从而间接加速有机氮的矿化。Atul-Nayyar等(2009)发现AM真菌改变了土壤微生物群落结构,这种变化可能是有机物质迅速降解的原因。

(2) 干旱胁迫

干旱胁迫条件下,菌根共生体依靠其高效的营养物质吸收和转运系统,提高了植物养分吸收效率,缓解了干旱胁迫对宿主植物造成的伤害。然而,AM共生体提高宿主植物抵御干旱胁迫的机制并不仅仅局限于养分的吸收和转运方面。它对宿主植物和生态系统的积极影响还包括提高植物净光合速率;改变进出植物的水流速率,提高根系导水性,增加叶片水势;促进宿主植物某些新陈代谢过程,例如增加生长素合成;影响胁迫响应因子脱落酸(ABA)的合成;改善土壤结构,提高其稳定性等等。尽管目前AM影响宿主植物抗旱性的机制研究相对较多,但总体上还不够系统深入,并且在某些方面还存在争议,而对于菌根真菌增强植物抗旱性的直接作用仍缺乏有力试验证据(李涛等,2012)。最近Li等(2013)从AM真菌Glomusintraradices中克隆了两个水孔蛋白基因GintAQPF1和GintAQPF2,通过酵母异源过表达证明两种水孔蛋白都有明显的输水功能。干旱胁迫条件下,水孔蛋白的高表达导致宿主植物根系相对含水量的显著增加。该研究为丛枝菌根真菌吸收水分提供了直接的分子证据。

(3) 盐分胁迫

盐渍化土壤中存在大量菌根真菌且种类丰富(Wang et al., 2001)。接种AM真菌能促进宿主植物对水分及养分的吸收,提高作物的生长和产量(Sheng et al., 2008)。在盐胁迫下,菌根共生体系能够增强植物对离子的选择性吸收,调节植物抗氧化酶活性和相关基因的表达(Rabie et al., 2005)、改变植株体内的激素水平以及水孔蛋白基因的表达,从而增强宿主植物的耐盐能力。也有研究表明外生菌根通过增强植物细胞质膜的稳定性,提高植物根系的活力,增强植物对水分的利用能力,提高耐盐能力(黄艺等,2006)。

(4) 重金属污染

AM真菌自然具有一定重金属耐性,但重金属污染环境中的菌株其耐性要强于非污染土壤中的菌株(Weissenhorn et al.,1993)。在重金属污染环境中,植物自身获取矿质养分往往比较困难,而菌根能有效增强植物摄取矿质养分的能力,增加其生物量,降低重金属在宿主植物体内的浓度(稀释效应),从而减轻重金属毒害。当然,在此间接作用之外,菌根真菌对植物也有直接的保护效应。AM真菌根外菌丝比表面积大,细胞壁成分如几丁质、 纤维素等对金属具有较强的吸附和吸收能力(陈保冬等,2005),能有效阻滞重金属从植物根部向地上部的转移(Chen et al.,2003;2007);改变土壤pH和根系分泌物的组分从而改变根际微环境,降低重金属对植物的有效性和毒性。目前已发现AM真菌重金属抗性基因,包括抗氧化基因、重金属络合蛋白基因以及重金属转运蛋白基因等(Lanfranco etal., 2002;Waschke et al., 2006;González-Guerreroet al.,2007;Aloui et al., 2009)。

外生菌根发达的外延菌丝能更有效地吸附或吸收重金属离子(Jones et al.,1986),菌根菌套或哈蒂氏网能过滤金属离子(Marschner et al.,1996);菌根分泌的黏液能与重金属结合,阻止其向根部运输(Denny et al., 1987)。目前已从外生菌根中分离到金属硫蛋白基因HcMT1、HcMT2和植物络合素合成酶基因TmelPCS等(Ramesh et al., 2009;Bolchi et al., 2011)。

延伸阅读:

陈保冬:菌根生态生理及其在土壤修复方面的应用研究

土壤修复技术:生态中心揭示丛枝菌根缓解植物铬毒害的机理

原标题:菌根共生生态生理研究回顾与展望
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

菌根查看更多>土壤修复查看更多>生态环境查看更多>