北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水技术正文

四种重金属废水资源化处理技术适用性分析

2017-11-02 16:12来源:重金属废水资源化处理关键词:重金属废水废水处理膜分离收藏点赞

投稿

我要投稿

一、膜分离

膜分离技术作为21世纪最有发展前景的高新技术,它采用一张选择性薄膜,借助外加推动力作用,可实现溶质与溶剂或溶质与溶质之间的分离、提纯、浓缩目的。当推动力为浓度差加化学反应时,膜过程为液体膜分离;当推动力为电位差时,膜过程为电渗析;当推动力为压力差时,膜分离过程为微滤、超滤、纳滤、反渗透。膜分离技术具有众多优点:1)分离精度高,可达纳米级别;2)分离能耗低;3)常温操作,无相变,勿需添加化学药剂,无二次污染;4)设备可根据处理量灵活配置,占地面积小。膜分离技术在重金属废水资源化处理方面已得到一定应用,随着制膜材料的优化及设备成本的降低,将会极大推动膜分离技术在重金属废水领域的大面积推广。

重金属废水资源化处理技术适用性分析

液膜技术

液膜通常是由有机溶剂、表面活性剂、流动载体及内水相组成,是一种很薄的液体膜(厚度为1~10μm)。它结合了膜分离与萃取的双重优势,通过废水中重金属离子简单扩散、选择性络合或螯合萃取反应、选择性渗透及膜内相反萃这四个过程,以使废水得以净化,同时实现重金属离子在膜内相富集,再通过破乳以回收重金属。液膜技术具有选择性高、传质速度快、反应温和等优点,特别适用于低浓度重金属废水的富集与回收,在电镀厂含Cr3+、Zn2+废水已有处理。液膜按构型和操作方式的不同,主要分为乳化液膜(emulsion liquid membrane , ELM) 和支撑液膜(supported liquid membrane , SLM),如下图1所示:

重金属废水资源化处理技术适用性分析

图 1 液膜分类

2.电渗析技术

电渗析器由隔板、阴、阳离子交换膜、电极、夹紧装置等主要部件组成(结构如下图2所示)。处理重金属废水时,阳离子膜只允许阳离子通过,阴离子膜只允许阴离子通过,在电流作用下,电镀废水得到浓缩和淡化。电镀废水中常含Cu2+、Ni2+、Zn2+和Cr2+等金属离子及氰化物等毒性较大的物质,通过电渗析-离子交换或电渗析-反渗透组合工艺,既能实现资源的回收利用,又可以减少污染的排放。其中含镍废水处理技术最为成熟,已有成套工业化装置。。电渗析法在重金属废水处理中具有技术可靠,操作费用低,占地面积小,不产生废渣的优点。但电渗析需要要有足够的电导提供电流效率,如镀镍废水的处理,要求镍盐的浓度不能低于1.5g/L。

重金属废水资源化处理技术适用性分析

图 2 电渗析器构造

3.微/超滤技术

微滤的过滤孔径为0.1~10μm,多数为对称膜,最常见的是曲孔型, 结构类似于网状海绵,另外还有一种毛细管型;也有非对称膜,膜孔呈截头圆锥体状,过滤过程中原料液流经膜孔径小的一面, 进人膜内的渗透液将沿着逐渐加大的膜孔流出,这种结构可促进传质并防止膜孔堵塞。超滤膜孔径为1nm~100nm,多为非对称膜,由一层极薄的表皮层与一层较厚的海绵状或指状结构的多孔层组成,前者其筛分过滤左右,后者起支撑作用。微/超滤膜按材质可分为有机、无机两大类,前者卷式、中空纤维式应用较多(如下图3所示),后者主要以管式、板框式为主(如下图4所示)。超/微膜由于孔径较大,不能直接过滤重金属离子,常作为预处理除悬浮物、胶体等粒子或大分子,因此要实现微/超滤对重金属离子的有效浓缩,则必须重金属离子进行一定预处理,即使其转化为粒径大于膜孔径的离子或粒子。因此,采用碱/硫化沉淀、胶束增强、络合作用将重金属离子进行转化,再结合微/超技术将重金属进行截留浓缩,得以净化废水,浓缩液采用电解或冶金手段将其回收。

重金属废水资源化处理技术适用性分析

图 3 无机微/超膜

重金属废水资源化处理技术适用性分析

图 4 陶瓷膜元件及装置

延伸阅读:

电镀厂重金属废水处理试验研究

污水处理技术篇:浅谈重金属废水处理技术

原标题:重金属废水资源化处理技术适用性分析
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

重金属废水查看更多>废水处理查看更多>膜分离查看更多>