北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水技术正文

废水同步脱硫脱氮关键工艺研究

2018-01-30 15:24来源:《环境科学学报》作者:曾勇等关键词:废水处理水体污染含硫废水收藏点赞

投稿

我要投稿

3 结果与讨论(Results and discussion)

3.1 脱硫耦联反硝化过程中pH和ORP的变化

图 2显示了在不同填料,不同S/N摩尔比条件下4组反应器中pH和ORP的变化.实验发现,当进水S/N摩尔比为5/4,5/3时(S2-实测浓度为218、303 mg˙L-1),如图 2a、2b所示,反应器中pH值均先上升再下降最后稳定在7.25~7.50,ORP则几乎一致上升并最终稳定在0 mV附近.此时对照组和实验组所得结果呈现出高度一致性.而且实验组pH值反应前后较初始值变化小于0.5,可减少实际工程中pH调控过程,减少运行管理程序及工程投资.而当进水S/N摩尔比增加到5/2,5/1时,如图 2c、2d所示,填料的差异对pH值和ORP的影响比较明显.当进水S/N摩尔比为5/2时(S2-实测浓度538 mg˙L-1),以聚氨酯泡沫为填料的B塔和以多面空心球为填料的C塔pH值分别在30、70 h左右开始下降,而A、D塔直到110 h时才开始下降.这说明B塔和C塔较A和D塔更早的利用废水体系中的S0作为电子供体,更早进入方程(2)过程.且仅有B塔与低进水S/N摩尔比(S/N=5/4,5/3)中ORP变化趋势一致,仅ORP值开始增加的时间点延后至40 h附近.C塔ORP以缓慢速率增长,B和D塔ORP值微增或几乎不变.而当进水S/N摩尔比进一步增大至5/1时(S2-实测浓度为1140 mg˙L-1),此浓度远高于武鑫等报道的将原水S/N摩尔比控制在5/3时,能稳定去除400 mg˙L-1原水中S2-浓度(武鑫等, 2013).仅有B塔中pH值在400 h时才开始下降,A、C和D塔pH值上升并稳定在9.0~9.5后基本不再变化.此时4组反应器中ORP变化趋势较相似,仅有ORP曲线上升时间点不同,最后均增加至0 mV左右.据此可知,当进水S/N摩尔比增加至5/2时,C塔中微生物系统较之前相比活性明显降低,D塔中微生物系统则开始出现崩溃现象.当S/N摩尔比进一步增加至5/1时,C、D塔中微生物系统崩溃,因而导致pH上升后不再变化.而A塔中非生物因素又不能将硫化物直接氧化成硫酸盐,因此pH值稳定在一个固定的范围.有趣的是当进水S/N摩尔比为5/4、5/3时,不接种微生物的A塔和接种微生物的B、C、D塔中pH和ORP曲线变化趋势一致.其原因可能是与反应器中残留的O2、取样过程中少量漏气以及自来水中脱硫菌的少量富集有关.

废水同步脱硫脱氮关键工艺研究

图 2 不同填料、不同S/N比下pH和ORP变化

3.2 脱硫耦联反硝化过程中S2-和SO42-的变化

图 3显示了在不同填料,不同S/N摩尔比条件下4组反应器中S2-和SO42-浓度的变化.在进水S/N摩尔比较低时,如图 3a、3b所示,4组反应器对S2-均能达到很好的去除效果,其中对照组A塔和实验组B、C、D塔几乎没有差别.实验组中SO42-浓度反应前后升高明显,而对照组中SO42-浓度仅有轻微的上升,不随进水S/N摩尔比的升高而变化,最后都稳定在300~400 mg˙L-1之间.当进水S/N摩尔比进一步升高时,如图 3c、3d所示,4组反应器对S2-的去除效果开始显现出较明显的差别,对照组A塔脱硫效率最差,而以聚氨酯泡沫为填料的实验组B塔和以多面空心球为填料的实验组C塔脱硫效率要明显好于实验组D塔.其中,B塔脱硫效率最高,C塔次之.这说明随着进水硫负荷的升高,非生物作用脱硫效率下降明显,而且填料对反应器脱硫效率也有较大的影响.不同的填料通过其比表面积大小影响生物固着效果,聚氨酯泡沫填料比表面积最大,挂膜效果最好,抗冲击负荷能力最强,从而脱硫效率最高(Fernandez et al., 2014).在图 3c、3d中,接种脱硫微生物的D塔脱硫效率反而低于不接种脱硫微生物的A塔.其原因可能是因为D塔以鲍尔环为填料,其比表面积相对较小,微生物挂膜效果较差,当接触较高浓度的含S2-废水时反应器中微生物系统出现崩溃,微生物从填料上死亡脱落,从而生物脱硫作用显著降低.而填料中其他兼性微生物相对含量升高,消耗一部分塔中残留的O2,降低了其非生物脱硫效果,因此出现了D塔脱硫效率低于A塔的现象.

废水同步脱硫脱氮关键工艺研究

图 3 不同填料、不同S/N条件下S-和SO42-变化

总体上各生物反应器对S2-的去除效果都较快.当进水S/N摩尔比升高至5/1时,C塔中微生物系统也开始有崩溃现象,S2-去除完全后SO42-浓度仍然增长缓慢.根据对A塔和出现崩溃的反应器中S2-和SO42-的监测可知,仅非生物作用虽能较缓慢的去除水中S2-,但不能将单质S0进一步氧化成SO42-.而且实验发现生物反应器对S2-的去除效果都比较迅速,这可能是因为SDD过程中将S2-氧化成S0仅需要少量的电子(Xu et al., 2016).而且当反应体系中仍有S2-存在时,SO42-浓度仅以非常缓慢的速率上升,当且仅当S2-去除完全后,SO42-浓度才会迅速增长.这说明当反应体系中S2-和S0同时存在时,体系中功能菌优先将S2-氧化成S0,待S2-去除完全后,再进一步将S0氧化成SO42-.

3.3 脱硫耦联反硝化过程中NO3--N和NO2--N的变化

图 4显示了在不同填料,不同进水S/N摩尔比条件下NO3--N和NO2--N的变化.对照组A塔在实验反应前后NO3--N浓度仅微弱减少,NO2--N浓度没有出现积累(Fernandez et al., 2014).而在进水S/N摩尔比为5/4, 5/3时,如图 4a、4b所示,实验组B、C和D塔中NO3--N均有明显减少直至完全去除.但当进水S/N摩尔比增加到5/2时,如图 4c所示,3个实验组对NO3--N去除效果就开始显现明显的差异,B塔对NO3--N的去除率最高,C塔次之.而D塔对NO3--N的去除效果较之前实验明显降低,仅比对照组A去除率稍高.对应的NO2--N浓度变化也显现出明显的差异,对NO2--N去除率最高的是B、C两塔,D塔在整个检测过程中NO2--N一直在积累.当进水S/N摩尔比进一步增大到5/1时,如图 4d所示,仅B塔对NO3--N表现出一定的降解效果,但去除效率较低进水S/N比实验中下降明显.其余3塔对NO3--N几乎没有去除.同时,也仅有B塔中出现NO2--N积累,其余3塔基本无变化.这说明随着进水S/N摩尔比的增加,填料因素对NO3--N去除率的影响作用明显,以聚氨酯泡沫和多面空心球为填料的生物滴滤塔反应器对NO3--N的去除效果最好.当进水S/N摩尔比进一步增加时,因系统中S2-浓度过高,填装低比表面积填料的生物滴滤塔反应器中微生物系统容易出现死亡崩溃,导致反硝化脱氮能力严重降低或丧失.这与之前对S2-和SO42-浓度的变化的分析结果相呼应.而且实验发现,反硝化过程中NO2--N出现了一定程度的积累,这可能是因为反硝化过程中NO3--N→NO2--N反应速度快于NO2--N→N2.但当NO3--N去除至较低浓度时NO2--N浓度才停止积累并迅速降低,这说明反硝化菌降解NOx--N的先后顺序:NO3--N快于NO2--N, 因此后期NO2--N浓度迅速下降.

废水同步脱硫脱氮关键工艺研究

图 4 不同填料,不同进水S/N下NO3--N和NO2--N变化

原标题:废水同步脱硫脱氮关键工艺参数及微生物群落结构的研究
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

废水处理查看更多>水体污染查看更多>含硫废水查看更多>